3,376 research outputs found

    Generalized bent Boolean functions and strongly regular Cayley graphs

    Get PDF
    In this paper we define the (edge-weighted) Cayley graph associated to a generalized Boolean function, introduce a notion of strong regularity and give several of its properties. We show some connections between this concept and generalized bent functions (gbent), that is, functions with flat Walsh-Hadamard spectrum. In particular, we find a complete characterization of quartic gbent functions in terms of the strong regularity of their associated Cayley graph.Comment: 13 pages, 2 figure

    Non-Boolean almost perfect nonlinear functions on non-Abelian groups

    Full text link
    The purpose of this paper is to present the extended definitions and characterizations of the classical notions of APN and maximum nonlinear Boolean functions to deal with the case of mappings from a finite group K to another one N with the possibility that one or both groups are non-Abelian.Comment: 17 page

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur

    On the normality of pp-ary bent functions

    Full text link
    Depending on the parity of nn and the regularity of a bent function ff from Fpn\mathbb F_p^n to Fp\mathbb F_p, ff can be affine on a subspace of dimension at most n/2n/2, (n1)/2(n-1)/2 or n/21n/2- 1. We point out that many pp-ary bent functions take on this bound, and it seems not easy to find examples for which one can show a different behaviour. This resembles the situation for Boolean bent functions of which many are (weakly) n/2n/2-normal, i.e. affine on a n/2n/2-dimensional subspace. However applying an algorithm by Canteaut et.al., some Boolean bent functions were shown to be not n/2n/2- normal. We develop an algorithm for testing normality for functions from Fpn\mathbb F_p^n to Fp\mathbb F_p. Applying the algorithm, for some bent functions in small dimension we show that they do not take on the bound on normality. Applying direct sum of functions this yields bent functions with this property in infinitely many dimensions.Comment: 13 page

    Quantum algorithms for highly non-linear Boolean functions

    Full text link
    Attempts to separate the power of classical and quantum models of computation have a long history. The ultimate goal is to find exponential separations for computational problems. However, such separations do not come a dime a dozen: while there were some early successes in the form of hidden subgroup problems for abelian groups--which generalize Shor's factoring algorithm perhaps most faithfully--only for a handful of non-abelian groups efficient quantum algorithms were found. Recently, problems have gotten increased attention that seek to identify hidden sub-structures of other combinatorial and algebraic objects besides groups. In this paper we provide new examples for exponential separations by considering hidden shift problems that are defined for several classes of highly non-linear Boolean functions. These so-called bent functions arise in cryptography, where their property of having perfectly flat Fourier spectra on the Boolean hypercube gives them resilience against certain types of attack. We present new quantum algorithms that solve the hidden shift problems for several well-known classes of bent functions in polynomial time and with a constant number of queries, while the classical query complexity is shown to be exponential. Our approach uses a technique that exploits the duality between bent functions and their Fourier transforms.Comment: 15 pages, 1 figure, to appear in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'10). This updated version of the paper contains a new exponential separation between classical and quantum query complexit
    corecore