1,127 research outputs found

    Turbo-detected unequal protection audio and speech transceivers using serially concatenated convolutional codes, trellis coded modulation and space-time trellis coding

    No full text
    The MPEG-4 TwinVQ audio codec and the AMR-WB speech codec are investigated in the context of a jointly optimised turbo transceiver capable of providing unequal error protection. The transceiver advocated consists of serially concatenated Space-Time Trellis Coding (STTC), Trellis Coded Modulation (TCM) and two different-rate Non-Systematic Convolutional codes (NSCs) used for unequal error protection. A benchmarker scheme combining STTC and a single-class protection NSC is used for comparison with the proposed scheme. The audio and speech performance of both schemes is evaluated, when communicating over uncorrelated Rayleigh fading channels. An Eb/N0E_b/N_0 value of about 2.5 (3.5)~dB is required for near-unimpaired audio (speech) transmission, which is about 3.07 (4.2)~dB from the capacity of the system

    Permutation Trellis Coded Multi-level FSK Signaling to Mitigate Primary User Interference in Cognitive Radio Networks

    Full text link
    We employ Permutation Trellis Code (PTC) based multi-level Frequency Shift Keying signaling to mitigate the impact of Primary Users (PUs) on the performance of Secondary Users (SUs) in Cognitive Radio Networks (CRNs). The PUs are assumed to be dynamic in that they appear intermittently and stay active for an unknown duration. Our approach is based on the use of PTC combined with multi-level FSK modulation so that an SU can improve its data rate by increasing its transmission bandwidth while operating at low power and not creating destructive interference for PUs. We evaluate system performance by obtaining an approximation for the actual Bit Error Rate (BER) using properties of the Viterbi decoder and carry out a thorough performance analysis in terms of BER and throughput. The results show that the proposed coded system achieves i) robustness by ensuring that SUs have stable throughput in the presence of heavy PU interference and ii) improved resiliency of SU links to interference in the presence of multiple dynamic PUs.Comment: 30 pages, 12 figure

    Algebraic Watchdog: Mitigating Misbehavior in Wireless Network Coding

    Get PDF
    We propose a secure scheme for wireless network coding, called the algebraic watchdog. By enabling nodes to detect malicious behaviors probabilistically and use overheard messages to police their downstream neighbors locally, the algebraic watchdog delivers a secure global self-checking network. Unlike traditional Byzantine detection protocols which are receiver-based, this protocol gives the senders an active role in checking the node downstream. The key idea is inspired by Marti et al.'s watchdog-pathrater, which attempts to detect and mitigate the effects of routing misbehavior. As an initial building block of a such system, we first focus on a two-hop network. We present a graphical model to understand the inference process nodes execute to police their downstream neighbors; as well as to compute, analyze, and approximate the probabilities of misdetection and false detection. In addition, we present an algebraic analysis of the performance using an hypothesis testing framework that provides exact formulae for probabilities of false detection and misdetection. We then extend the algebraic watchdog to a more general network setting, and propose a protocol in which we can establish trust in coded systems in a distributed manner. We develop a graphical model to detect the presence of an adversarial node downstream within a general multi-hop network. The structure of the graphical model (a trellis) lends itself to well-known algorithms, such as the Viterbi algorithm, which can compute the probabilities of misdetection and false detection. We show analytically that as long as the min-cut is not dominated by the Byzantine adversaries, upstream nodes can monitor downstream neighbors and allow reliable communication with certain probability. Finally, we present simulation results that support our analysis.Comment: 10 pages, 10 figures, Submitted to IEEE Journal on Selected Areas in Communications (JSAC) "Advances in Military Networking and Communications

    Scalable video/image transmission using rate compatible PUM turbo codes

    Get PDF
    The robust delivery of video over emerging wireless networks poses many challenges due to the heterogeneity of access networks, the variations in streaming devices, and the expected variations in network conditions caused by interference and coexistence. The proposed approach exploits the joint optimization of a wavelet-based scalable video/image coding framework and a forward error correction method based on PUM turbo codes. The scheme minimizes the reconstructed image/video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the rate optimization technique and the statistics of the transmission channel

    Joint source/channel decoding of scalefactors in MPEG-AAC encoded bitstreams

    No full text
    International audienceThis paper describes a bandwidth-efficient method for improved decoding of MPEG-AAC bitstreams when the encoded data are transmitted over a noisy channel. Assuming that the critical part (headers) of each frame has been correctly received, we apply a soft-decoding method to reconstruct the scalefactors, which represent a highly noise-sensitive part of the bitstream. The damaged spectral data are reconstructed using an intra-frame error concealment method. Two methods for soft decoding of scalefactors are described: blind mode and informed mode. In the latter, a very small amount of additional data is included in the bitstream. At medium SNR, this method provides a significant improvement in perceptual signal quality compared to the classical hard-decoding method

    Decoding Schemes for Foliated Sparse Quantum Error Correcting Codes

    Get PDF
    Foliated quantum codes are a resource for fault-tolerant measurement-based quantum error correction for quantum repeaters and for quantum computation. They represent a general approach to integrating a range of possible quantum error correcting codes into larger fault-tolerant networks. Here we present an efficient heuristic decoding scheme for foliated quantum codes, based on message passing between primal and dual code 'sheets'. We test this decoder on two different families of sparse quantum error correcting code: turbo codes and bicycle codes, and show reasonably high numerical performance thresholds. We also present a construction schedule for building such code states.Comment: 23 pages, 15 figures, accepted for publication in Phys. Rev.

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    TCQ Practical Evaluation in the Hyper-Cube Watermarking Framework

    Get PDF
    International audienceThe Hyper-Cube watermarking has shown a high potential for high-rate robust watermarking. In this paper, we carry on the study and the evaluation of this quantization-based approach. We especially focus on the use of a Trellis Coded Quantization (TCQ) and its impact on the Hyper-Cube performances. First, we recall the TCQ functioning principle andwe propose adapted quantizers. Second, we analyze the integration of the TCQ module in a cascade of two coders (resp. two decoders). Finally, we experimentally compare the proposed approach with the state-of-the-art of high-rate watermarking schemes. The obtained results show that our Multi-Hyper-Cube scheme always provides good average performance
    • …
    corecore