71 research outputs found

    Generalized Thue-Morse words and palindromic richness

    Get PDF
    We prove that the generalized Thue-Morse word tb,m\mathbf{t}_{b,m} defined for b2b \geq 2 and m1m \geq 1 as tb,m=(sb(n)modm)n=0+\mathbf{t}_{b,m} = (s_b(n) \mod m)_{n=0}^{+\infty}, where sb(n)s_b(n) denotes the sum of digits in the base-bb representation of the integer nn, has its language closed under all elements of a group DmD_m isomorphic to the dihedral group of order 2m2m consisting of morphisms and antimorphisms. Considering simultaneously antimorphisms ΘDm\Theta \in D_m, we show that tb,m\mathbf{t}_{b,m} is saturated by Θ\Theta-palindromes up to the highest possible level. Using the terminology generalizing the notion of palindromic richness for more antimorphisms recently introduced by the author and E. Pelantov\'a, we show that tb,m\mathbf{t}_{b,m} is DmD_m-rich. We also calculate the factor complexity of tb,m\mathbf{t}_{b,m}.Comment: 11 page

    Cyclic Complexity of Words

    Get PDF
    We introduce and study a complexity function on words cx(n),c_x(n), called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length nn of an infinite word x.x. We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if xx is a Sturmian word and yy is a word having the same cyclic complexity of x,x, then up to renaming letters, xx and yy have the same set of factors. In particular, yy is also Sturmian of slope equal to that of x.x. Since cx(n)=1c_x(n)=1 for some n1n\geq 1 implies xx is periodic, it is natural to consider the quantity lim infncx(n).\liminf_{n\rightarrow \infty} c_x(n). We show that if xx is a Sturmian word, then lim infncx(n)=2.\liminf_{n\rightarrow \infty} c_x(n)=2. We prove however that this is not a characterization of Sturmian words by exhibiting a restricted class of Toeplitz words, including the period-doubling word, which also verify this same condition on the limit infimum. In contrast we show that, for the Thue-Morse word tt, lim infnct(n)=+.\liminf_{n\rightarrow \infty} c_t(n)=+\infty.Comment: To appear in Journal of Combinatorial Theory, Series

    Suffix conjugates for a class of morphic subshifts

    Full text link
    Let A be a finite alphabet and f: A^* --> A^* be a morphism with an iterative fixed point f^\omega(\alpha), where \alpha{} is in A. Consider the subshift (X, T), where X is the shift orbit closure of f^\omega(\alpha) and T: X --> X is the shift map. Let S be a finite alphabet that is in bijective correspondence via a mapping c with the set of nonempty suffixes of the images f(a) for a in A. Let calS be a subset S^N be the set of infinite words s = (s_n)_{n\geq 0} such that \pi(s):= c(s_0)f(c(s_1)) f^2(c(s_2))... is in X. We show that if f is primitive and f(A) is a suffix code, then there exists a mapping H: calS --> calS such that (calS, H) is a topological dynamical system and \pi: (calS, H) --> (X, T) is a conjugacy; we call (calS, H) the suffix conjugate of (X, T). In the special case when f is the Fibonacci or the Thue-Morse morphism, we show that the subshift (calS, T) is sofic, that is, the language of calS is regular

    Minimal complexity of equidistributed infinite permutations

    Full text link
    An infinite permutation is a linear ordering of the set of natural numbers. An infinite permutation can be defined by a sequence of real numbers where only the order of elements is taken into account. In the paper we investigate a new class of {\it equidistributed} infinite permutations, that is, infinite permutations which can be defined by equidistributed sequences. Similarly to infinite words, a complexity p(n)p(n) of an infinite permutation is defined as a function counting the number of its subpermutations of length nn. For infinite words, a classical result of Morse and Hedlund, 1938, states that if the complexity of an infinite word satisfies p(n)np(n) \leq n for some nn, then the word is ultimately periodic. Hence minimal complexity of aperiodic words is equal to n+1n+1, and words with such complexity are called Sturmian. For infinite permutations this does not hold: There exist aperiodic permutations with complexity functions growing arbitrarily slowly, and hence there are no permutations of minimal complexity. We show that, unlike for permutations in general, the minimal complexity of an equidistributed permutation α\alpha is pα(n)=np_{\alpha}(n)=n. The class of equidistributed permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words.Comment: An old (weaker) version of the paper was presented at DLT 2015. The current version is submitted to a journa

    Palindromic richness for languages invariant under more symmetries

    Full text link
    For a given finite group GG consisting of morphisms and antimorphisms of a free monoid A\mathcal{A}^*, we study infinite words with language closed under the group GG. We focus on the notion of GG-richness which describes words rich in generalized palindromic factors, i.e., in factors ww satisfying Θ(w)=w\Theta(w) = w for some antimorphism ΘG\Theta \in G. We give several equivalent descriptions which are generalizations of know characterizations of rich words (in the terms of classical palindromes) and show two examples of GG-rich words

    Non-Injectivity of Infinite Interval Exchange Transformations and Generalized Thue-Morse Sequences

    Full text link
    In this paper we study the non-injectivity arising in infinite interval exchange transformations. In particular, we build and analyze an infinite family of infinite interval exchanges semi-conjugated to generalized Thue-Morse subshifts, whose non-injectivity occurs at a characterizable finite set of points.Comment: 23 pages, 8 figure
    corecore