15,910 research outputs found

    On binary minimal clones

    Get PDF

    Some Examples of Minimal Groupoids on a Finite Set (Algebraic System, Logic, Language and Related Areas in Computer Science)

    Get PDF
    A minimal clone is an atom in the lattice of clones. The classification of minimal clones on a finite set still remains unsolved. A minimal groupoid is a minimal clone generated by a binary idempotent function. In this paper we report some examples of minimal groupoids generated by binary functions which resemble projections

    A survey of clones on infinite sets

    Full text link
    A clone on a set X is a set of finitary operations on X which contains all projections and which is moreover closed under functional composition. Ordering all clones on X by inclusion, one obtains a complete algebraic lattice, called the clone lattice. We summarize what we know about the clone lattice on an infinite base set X and formulate what we consider the most important open problems.Comment: 37 page

    Necessary conditions for tractability of valued CSPs

    Full text link
    The connection between constraint languages and clone theory has been a fruitful line of research on the complexity of constraint satisfaction problems. In a recent result, Cohen et al. [SICOMP'13] have characterised a Galois connection between valued constraint languages and so-called weighted clones. In this paper, we study the structure of weighted clones. We extend the results of Creed and Zivny from [CP'11/SICOMP'13] on types of weightings necessarily contained in every nontrivial weighted clone. This result has immediate computational complexity consequences as it provides necessary conditions for tractability of weighted clones and thus valued constraint languages. We demonstrate that some of the necessary conditions are also sufficient for tractability, while others are provably not.Comment: To appear in SIAM Journal on Discrete Mathematics (SIDMA

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets \dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    Quantum Cloning of Binary Coherent States - Optimal Transformations and Practical Limits

    Get PDF
    The notions of qubits and coherent states correspond to different physical systems and are described by specific formalisms. Qubits are associated with a two-dimensional Hilbert space and can be illustrated on the Bloch sphere. In contrast, the underlying Hilbert space of coherent states is infinite-dimensional and the states are typically represented in phase space. For the particular case of binary coherent state alphabets these otherwise distinct formalisms can equally be applied. We capitalize this formal connection to analyse the properties of optimally cloned binary coherent states. Several practical and near-optimal cloning schemes are discussed and the associated fidelities are compared to the performance of the optimal cloner.Comment: 12 pages, 12 figure
    corecore