138 research outputs found

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    The provability logic of all provability predicates

    Full text link
    We prove that the provability logic of all provability predicates is exactly Fitting, Marek, and Truszczy\'nski's pure logic of necessitation N\mathsf{N}. Moreover, we introduce three extensions N4\mathsf{N4}, NR\mathsf{NR}, and NR4\mathsf{NR4} of N\mathsf{N} and investigate the arithmetical semantics of these logics. In fact, we prove that N4\mathsf{N4}, NR\mathsf{NR}, and NR4\mathsf{NR4} are the provability logics of all provability predicates satisfying the third condition D3\mathbf{D3} of the derivabiity conditions, all Rosser's provability predicates, and all Rosser's provability predicates satisfying D3\mathbf{D3}, respectively.Comment: 34 page

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    Modal Logics with Hard Diamond-free Fragments

    Full text link
    We investigate the complexity of modal satisfiability for certain combinations of modal logics. In particular we examine four examples of multimodal logics with dependencies and demonstrate that even if we restrict our inputs to diamond-free formulas (in negation normal form), these logics still have a high complexity. This result illustrates that having D as one or more of the combined logics, as well as the interdependencies among logics can be important sources of complexity even in the absence of diamonds and even when at the same time in our formulas we allow only one propositional variable. We then further investigate and characterize the complexity of the diamond-free, 1-variable fragments of multimodal logics in a general setting.Comment: New version: improvements and corrections according to reviewers' comments. Accepted at LFCS 201

    Speaking about Transistive Frames in Propositional Languages

    Get PDF
    This paper is a comparative study of the propositional intuitionistic (non-modal) and classical modal languages interpreted in the standard way on transitive frames. It shows that, when talking about these frames rather than conventional quasi-orders, the intuitionistic language displays some unusual features: its expressive power becomes weaker than that of the modal language, the induced consequence relation does not have a deduction theorem and is not protoalgebraic. Nevertheless, the paper develops a manageable model theory for this consequence and its extensions which also reveals some unexpected phenomena. The balance between the intuitionistic and modal languages is restored by adding to the former one more implication

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems
    • …
    corecore