2,514 research outputs found

    The Cost of Address Translation

    Full text link
    Modern computers are not random access machines (RAMs). They have a memory hierarchy, multiple cores, and virtual memory. In this paper, we address the computational cost of address translation in virtual memory. Starting point for our work is the observation that the analysis of some simple algorithms (random scan of an array, binary search, heapsort) in either the RAM model or the EM model (external memory model) does not correctly predict growth rates of actual running times. We propose the VAT model (virtual address translation) to account for the cost of address translations and analyze the algorithms mentioned above and others in the model. The predictions agree with the measurements. We also analyze the VAT-cost of cache-oblivious algorithms.Comment: A extended abstract of this paper was published in the proceedings of ALENEX13, New Orleans, US

    Decolonizing Information Narratives: Entangled Apocalyptics, Algorithmic Racism and the Myths of History

    Get PDF
    In what follows, some contemporary narratives about ‘the information society’ are interrogated from critical race theoretical and decolonial perspectives with a view to constructing a ‘counter-narrative’ purporting to demonstrate the embeddedness of coloniality—that is, the persistent operation of colonial logics—in such discourses

    Approximate Minimum Diameter

    Full text link
    We study the minimum diameter problem for a set of inexact points. By inexact, we mean that the precise location of the points is not known. Instead, the location of each point is restricted to a contineus region (\impre model) or a finite set of points (\indec model). Given a set of inexact points in one of \impre or \indec models, we wish to provide a lower-bound on the diameter of the real points. In the first part of the paper, we focus on \indec model. We present an O(21ϵdϵ2dn3)O(2^{\frac{1}{\epsilon^d}} \cdot \epsilon^{-2d} \cdot n^3 ) time approximation algorithm of factor (1+ϵ)(1+\epsilon) for finding minimum diameter of a set of points in dd dimensions. This improves the previously proposed algorithms for this problem substantially. Next, we consider the problem in \impre model. In dd-dimensional space, we propose a polynomial time d\sqrt{d}-approximation algorithm. In addition, for d=2d=2, we define the notion of α\alpha-separability and use our algorithm for \indec model to obtain (1+ϵ)(1+\epsilon)-approximation algorithm for a set of α\alpha-separable regions in time O(21ϵ2.n3ϵ10.sin(α/2)3)O(2^{\frac{1}{\epsilon^2}}\allowbreak . \frac{n^3}{\epsilon^{10} .\sin(\alpha/2)^3} )
    corecore