1,152 research outputs found

    On the Convergence Time of the Best Response Dynamics in Player-specific Congestion Games

    Full text link
    We study the convergence time of the best response dynamics in player-specific singleton congestion games. It is well known that this dynamics can cycle, although from every state a short sequence of best responses to a Nash equilibrium exists. Thus, the random best response dynamics, which selects the next player to play a best response uniformly at random, terminates in a Nash equilibrium with probability one. In this paper, we are interested in the expected number of best responses until the random best response dynamics terminates. As a first step towards this goal, we consider games in which each player can choose between only two resources. These games have a natural representation as (multi-)graphs by identifying nodes with resources and edges with players. For the class of games that can be represented as trees, we show that the best-response dynamics cannot cycle and that it terminates after O(n^2) steps where n denotes the number of resources. For the class of games represented as cycles, we show that the best response dynamics can cycle. However, we also show that the random best response dynamics terminates after O(n^2) steps in expectation. Additionally, we conjecture that in general player-specific singleton congestion games there exists no polynomial upper bound on the expected number of steps until the random best response dynamics terminates. We support our conjecture by presenting a family of games for which simulations indicate a super-polynomial convergence time

    On the Impact of Fair Best Response Dynamics

    Get PDF
    In this work we completely characterize how the frequency with which each player participates in the game dynamics affects the possibility of reaching efficient states, i.e., states with an approximation ratio within a constant factor from the price of anarchy, within a polynomially bounded number of best responses. We focus on the well known class of congestion games and we show that, if each player is allowed to play at least once and at most β\beta times any TT best responses, states with approximation ratio O(β)O(\beta) times the price of anarchy are reached after TloglognT \lceil \log \log n \rceil best responses, and that such a bound is essentially tight also after exponentially many ones. One important consequence of our result is that the fairness among players is a necessary and sufficient condition for guaranteeing a fast convergence to efficient states. This answers the important question of the maximum order of β\beta needed to fast obtain efficient states, left open by [9,10] and [3], in which fast convergence for constant β\beta and very slow convergence for β=O(n)\beta=O(n) have been shown, respectively. Finally, we show that the structure of the game implicitly affects its performances. In particular, we show that in the symmetric setting, in which all players share the same set of strategies, the game always converges to an efficient state after a polynomial number of best responses, regardless of the frequency each player moves with

    Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure

    Full text link
    We consider structural and algorithmic questions related to the Nash dynamics of weighted congestion games. In weighted congestion games with linear latency functions, the existence of (pure Nash) equilibria is guaranteed by potential function arguments. Unfortunately, this proof of existence is inefficient and computing equilibria is such games is a {\sf PLS}-hard problem. The situation gets worse when superlinear latency functions come into play; in this case, the Nash dynamics of the game may contain cycles and equilibria may not even exist. Given these obstacles, we consider approximate equilibria as alternative solution concepts. Do such equilibria exist? And if so, can we compute them efficiently? We provide positive answers to both questions for weighted congestion games with polynomial latency functions by exploiting an "approximation" of such games by a new class of potential games that we call Ψ\Psi-games. This allows us to show that these games have d!d!-approximate equilibria, where dd is the maximum degree of the latency functions. Our main technical contribution is an efficient algorithm for computing O(1)-approximate equilibria when dd is a constant. For games with linear latency functions, the approximation guarantee is 3+52+O(γ)\frac{3+\sqrt{5}}{2}+O(\gamma) for arbitrarily small γ>0\gamma>0; for latency functions with maximum degree d2d\geq 2, it is d2d+o(d)d^{2d+o(d)}. The running time is polynomial in the number of bits in the representation of the game and 1/γ1/\gamma. As a byproduct of our techniques, we also show the following structural statement for weighted congestion games with polynomial latency functions of maximum degree d2d\geq 2: polynomially-long sequences of best-response moves from any initial state to a dO(d2)d^{O(d^2)}-approximate equilibrium exist and can be efficiently identified in such games as long as dd is constant.Comment: 31 page

    Routing Games with Progressive Filling

    Full text link
    Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs). We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived

    Altruism in Atomic Congestion Games

    Full text link
    This paper studies the effects of introducing altruistic agents into atomic congestion games. Altruistic behavior is modeled by a trade-off between selfish and social objectives. In particular, we assume agents optimize a linear combination of personal delay of a strategy and the resulting increase in social cost. Our model can be embedded in the framework of congestion games with player-specific latency functions. Stable states are the Nash equilibria of these games, and we examine their existence and the convergence of sequential best-response dynamics. Previous work shows that for symmetric singleton games with convex delays Nash equilibria are guaranteed to exist. For concave delay functions we observe that there are games without Nash equilibria and provide a polynomial time algorithm to decide existence for symmetric singleton games with arbitrary delay functions. Our algorithm can be extended to compute best and worst Nash equilibria if they exist. For more general congestion games existence becomes NP-hard to decide, even for symmetric network games with quadratic delay functions. Perhaps surprisingly, if all delay functions are linear, then there is always a Nash equilibrium in any congestion game with altruists and any better-response dynamics converges. In addition to these results for uncoordinated dynamics, we consider a scenario in which a central altruistic institution can motivate agents to act altruistically. We provide constructive and hardness results for finding the minimum number of altruists to stabilize an optimal congestion profile and more general mechanisms to incentivize agents to adopt favorable behavior.Comment: 13 pages, 1 figure, includes some minor adjustment

    Mean-Field-Type Games in Engineering

    Full text link
    A mean-field-type game is a game in which the instantaneous payoffs and/or the state dynamics functions involve not only the state and the action profile but also the joint distributions of state-action pairs. This article presents some engineering applications of mean-field-type games including road traffic networks, multi-level building evacuation, millimeter wave wireless communications, distributed power networks, virus spread over networks, virtual machine resource management in cloud networks, synchronization of oscillators, energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201

    Node-Max-Cut and the Complexity of Equilibrium in Linear Weighted Congestion Games

    Get PDF
    In this work, we seek a more refined understanding of the complexity of local optimum computation for Max-Cut and pure Nash equilibrium (PNE) computation for congestion games with weighted players and linear latency functions. We show that computing a PNE of linear weighted congestion games is PLS-complete either for very restricted strategy spaces, namely when player strategies are paths on a series-parallel network with a single origin and destination, or for very restricted latency functions, namely when the latency on each resource is equal to the congestion. Our results reveal a remarkable gap regarding the complexity of PNE in congestion games with weighted and unweighted players, since in case of unweighted players, a PNE can be easily computed by either a simple greedy algorithm (for series-parallel networks) or any better response dynamics (when the latency is equal to the congestion). For the latter of the results above, we need to show first that computing a local optimum of a natural restriction of Max-Cut, which we call Node-Max-Cut, is PLS-complete. In Node-Max-Cut, the input graph is vertex-weighted and the weight of each edge is equal to the product of the weights of its endpoints. Due to the very restricted nature of Node-Max-Cut, the reduction requires a careful combination of new gadgets with ideas and techniques from previous work. We also show how to compute efficiently a (1+?)-approximate equilibrium for Node-Max-Cut, if the number of different vertex weights is constant
    corecore