2,422 research outputs found

    Verification of the FtCayuga fault-tolerant microprocessor system. Volume 1: A case study in theorem prover-based verification

    Get PDF
    The design and formal verification of a hardware system for a task that is an important component of a fault tolerant computer architecture for flight control systems is presented. The hardware system implements an algorithm for obtaining interactive consistancy (byzantine agreement) among four microprocessors as a special instruction on the processors. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, provided certain preconditions hold. An assumption is made that the processors execute synchronously. For verification, the authors used a computer aided design hardware design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover

    VeriSFQ - A Semi-formal Verification Framework and Benchmark for Single Flux Quantum Technology

    Get PDF
    In this paper, we propose a semi-formal verification framework for single-flux quantum (SFQ) circuits called VeriSFQ, using the Universal Verification Methodology (UVM) standard. The considered SFQ technology is superconducting digital electronic devices that operate at cryogenic temperatures with active circuit elements called the Josephson junction, which operate at high switching speeds and low switching energy - allowing SFQ circuits to operate at frequencies over 300 gigahertz. Due to key differences between SFQ and CMOS logic, verification techniques for the former are not as advanced as the latter. Thus, it is crucial to develop efficient verification techniques as the complexity of SFQ circuits scales. The VeriSFQ framework focuses on verifying the key circuit and gate-level properties of SFQ logic: fanout, gate-level pipeline, path balancing, and input-to-output latency. The combinational circuits considered in analyzing the performance of VeriSFQ are: Kogge-Stone adders (KSA), array multipliers, integer dividers, and select ISCAS'85 combinational benchmark circuits. Methods of introducing bugs into SFQ circuit designs for verification detection were experimented with - including stuck-at faults, fanout errors, unbalanced paths, and functional bugs like incorrect logic gates. In addition, we propose an SFQ verification benchmark consisting of combinational SFQ circuits that exemplify SFQ logic properties and present the performance of the VeriSFQ framework on these benchmark circuits. The portability and reusability of the UVM standard allows the VeriSFQ framework to serve as a foundation for future SFQ semi-formal verification techniques.Comment: 7 pages, 6 figures, 4 tables; submitted, accepted, and presented at ISQED 2019 (20th International Symposium on Quality Electronic Design) on March 7th, 2019 in Santa Clara, CA, US

    What is the Path to Fast Fault Simulation?

    Get PDF
    Motivated by the recent advances in fast fault simulation techniques for large combinational circuits, a panel discussion has been organized for the 1988 International Test Conference. This paper is a collective account of the position statements offered by the panelists

    Testing of Asynchronous NULL Conventional Logic (NCL) Circuits

    Get PDF
    Due to the absence of a global clock and presence of more state holding elements that synchronize the control and data paths, conventional automatic test pattern generation (ATPG) algorithms would fail when applied to asynchronous circuits, leading to poor fault coverage. This paper focuses on design for test (DFT) techniques aimed at making asynchronous NCL designs testable using existing DFT CAD tools with reasonable gate overhead, by enhancing controllability of feedback nets and observability for fault sites that are flagged unobservable. The proposed approach performs scan and test points insertion on NCL designs using custom ATPG library. The approach has been automated, which is essential for large systems; and are fully compatible with industry standard tools

    TFI-FTS: An efficient transient fault injection and fault-tolerant system for asynchronous circuits on FPGA platform

    Get PDF
    Designing VLSI digital circuits is challenging tasks because of testing the circuits concerning design time. The reliability and productivity of digital integrated circuits are primarily affected by the defects in the manufacturing process or systems. If the defects are more in the systems, which leads the fault in the systems. The fault tolerant systems are necessary to overcome the faults in the VLSI digital circuits. In this research article, an asynchronous circuits based an effective transient fault injection (TFI) and fault tolerant system (FTS) are modelled. The TFI system generates the faults based on BMA based LFSR with faulty logic insertion and one hot encoded register. The BMA based LFSR reduces the hardware complexity with less power consumption on-chip than standard LFSR method. The FTS uses triple mode redundancy (TMR) based majority voter logic (MVL) to tolerant the faults for asynchronous circuits. The benchmarked 74X-series circuits are considered as an asynchronous circuit for TMR logic. The TFI-FTS module is modeled using Verilog-HDL on Xilinx-ISE and synthesized on hardware platform. The Performance parameters are tabulated for TFI-FTS based asynchronous circuits. The performance of TFI-FTS Module is analyzed with 100% fault coverage. The fault coverage is validated using functional simulation of each asynchronous circuit with fault injection in TFI-FTS Module
    corecore