10 research outputs found

    Pseudorandomness and the Minimum Circuit Size Problem

    Get PDF

    On Basing Auxiliary-Input Cryptography on NP-Hardness via Nonadaptive Black-Box Reductions

    Get PDF
    Constructing one-way functions based on NP-hardness is a central challenge in theoretical computer science. Unfortunately, Akavia et al. [Akavia et al., 2006] presented strong evidence that a nonadaptive black-box (BB) reduction is insufficient to solve this challenge. However, should we give up such a central proof technique even for an intermediate step? In this paper, we turn our eyes from standard cryptographic primitives to weaker cryptographic primitives allowed to take auxiliary-input and continue to explore the capability of nonadaptive BB reductions to base auxiliary-input primitives on NP-hardness. Specifically, we prove the followings: - if we base an auxiliary-input pseudorandom generator (AIPRG) on NP-hardness via a nonadaptive BB reduction, then the polynomial hierarchy collapses; - if we base an auxiliary-input one-way function (AIOWF) or auxiliary-input hitting set generator (AIHSG) on NP-hardness via a nonadaptive BB reduction, then an (i.o.-)one-way function also exists based on NP-hardness (via an adaptive BB reduction). These theorems extend our knowledge on nonadaptive BB reductions out of the current worst-to-average framework. The first result provides new evidence that nonadaptive BB reductions are insufficient to base AIPRG on NP-hardness. The second result also yields a weaker but still surprising consequence of nonadaptive BB reductions, i.e., a one-way function based on NP-hardness. In fact, the second result is interpreted in the following two opposite ways. Pessimistically, it shows that basing AIOWF or AIHSG on NP-hardness via nonadaptive BB reductions is harder than constructing a one-way function based on NP-hardness, which can be regarded as a negative result. Note that AIHSG is a weak primitive implied even by the hardness of learning; thus, this pessimistic view provides conceptually stronger limitations than the currently known limitations on nonadaptive BB reductions. Optimistically, it offers a new hope: breakthrough construction of auxiliary-input primitives might also provide construction standard cryptographic primitives. This optimistic view enhances the significance of further investigation on constructing auxiliary-input or other intermediate cryptographic primitives instead of standard cryptographic primitives

    A Relativization Perspective on Meta-Complexity

    Get PDF
    Meta-complexity studies the complexity of computational problems about complexity theory, such as the Minimum Circuit Size Problem (MCSP) and its variants. We show that a relativization barrier applies to many important open questions in meta-complexity. We give relativized worlds where: 1) MCSP can be solved in deterministic polynomial time, but the search version of MCSP cannot be solved in deterministic polynomial time, even approximately. In contrast, Carmosino, Impagliazzo, Kabanets, Kolokolova [CCC'16] gave a randomized approximate search-to-decision reduction for MCSP with a relativizing proof. 2) The complexities of MCSP[2^{n/2}] and MCSP[2^{n/4}] are different, in both worst-case and average-case settings. Thus the complexity of MCSP is not "robust" to the choice of the size function. 3) Levin’s time-bounded Kolmogorov complexity Kt(x) can be approximated to a factor (2+ε) in polynomial time, for any ε > 0. 4) Natural proofs do not exist, and neither do auxiliary-input one-way functions. In contrast, Santhanam [ITCS'20] gave a relativizing proof that the non-existence of natural proofs implies the existence of one-way functions under a conjecture about optimal hitting sets. 5) DistNP does not reduce to GapMINKT by a family of "robust" reductions. This presents a technical barrier for solving a question of Hirahara [FOCS'20]

    Probabilistic Kolmogorov complexity with applications to average-case complexity

    Get PDF
    Understanding the relationship between the worst-case and average-case complexities of NP and of other subclasses of PH is a long-standing problem in complexity theory. Over the last few years, much progress has been achieved in this front through the investigation of meta-complexity: the complexity of problems that refer to the complexity of the input string x (e.g., given a string x, estimate its time-bounded Kolmogorov complexity). In particular, [Shuichi Hirahara, 2021] employed techniques from meta-complexity to show that if DistNP ⊆ AvgP then UP ⊆ DTIME[2^{O(n/log n)}]. While this and related results [Shuichi Hirahara and Mikito Nanashima, 2021; Lijie Chen et al., 2022] offer exciting progress after a long gap, they do not survive in the setting of randomized computations: roughly speaking, "randomness" is the opposite of "structure", and upper bounding the amount of structure (time-bounded Kolmogorov complexity) of different objects is crucial in recent applications of meta-complexity. This limitation is significant, since randomized computations are ubiquitous in algorithm design and give rise to a more robust theory of average-case complexity [Russell Impagliazzo and Leonid A. Levin, 1990]. In this work, we develop a probabilistic theory of meta-complexity, by incorporating randomness into the notion of complexity of a string x. This is achieved through a new probabilistic variant of time-bounded Kolmogorov complexity that we call pK^t complexity. Informally, pK^t(x) measures the complexity of x when shared randomness is available to all parties involved in a computation. By porting key results from meta-complexity to the probabilistic domain of pK^t complexity and its variants, we are able to establish new connections between worst-case and average-case complexity in the important setting of probabilistic computations: - If DistNP ⊆ AvgBPP, then UP ⊆ RTIME[2^O(n/log n)]. - If DistΣ^P_2 ⊆ AvgBPP, then AM ⊆ BPTIME[2^O(n/log n)]. - In the fine-grained setting [Lijie Chen et al., 2022], we get UTIME[2^O(√{nlog n})] ⊆ RTIME[2^O(√{nlog n})] and AMTIME[2^O(√{nlog n})] ⊆ BPTIME[2^O(√{nlog n})] from stronger average-case assumptions. - If DistPH ⊆ AvgBPP, then PH ⊆ BPTIME[2^O(n/log n)]. Specifically, for an

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore