82 research outputs found

    Dual-Mass MEMS Gyroscope Structure, Design, and Electrostatic Compensation

    Get PDF
    Dual-mass MEMS gyroscope is one of the most popular inertial sensors. In this chapter, the structure design and electrostatic compensation technology for dual-mass MEMS gyroscope is introduced. Firstly, a classical dual-mass MEMS gyroscope structure is proposed, how it works as a tuning fork (drive anti-phase mode), and the structure dynamical model together with the monitoring system are presented. Secondly, the imperfect elements during the structure manufacture process are analyzed, and the quadrature error coupling stiffness model for dual-mass structure is proposed. After that, the quadrature error correction system based on coupling stiffness electrostatic compensation method is designed and evaluated. Thirdly, the dual-mass structure sensing mode modal is proposed, and the force rebalancing combs stimulation method is utilized to achieve sensing mode transform function precisely. The bandwidth of sensing open loop is calculated and experimentally proved as 0.54 times with the resonant frequency difference between sensing and drive modes. Then, proportional-integral-phase-leading controller is presented in sensing close loop to expand the bandwidth, and the experiment shows that the bandwidth is improved from 13 to 104 Hz. Finally, the results are concluded and summarized

    Design and Implementation of a Z-Axis MEMS Gyroscope with a Symmetric Multiple-Mass Mechanical Structure

    Get PDF
    This thesis presents a z-axis MEMS gyroscope with a symmetric mechanical structure. The multiple-mass design prioritizes the sense-mode Quality Factor (Q) and thus improves its scale factor. The proposed mechanically coupled, dynamically balanced anti-phase sense-mode design minimizes energy dissipation through the substrate in order to maximize the Q. Numerical simulation is implemented in a finite element analysis software, COMSOL, to identify the two operation modes of the gyroscope: drive-mode and sense-mode. The multiple-mass gyroscope design is further fabricated using a one-mask process. Experimental characterization of frequency response in both drive-mode and sense-mode of the device are conducted, proving the design concept for improving the Q in the sense-mode

    High-Performance Micromachined Vibratory Rate- and Rate-Integrating Gyroscopes.

    Full text link
    We aim to reduce vibration sensitivity by developing gyros that operate in the balanced mode. The balanced mode creates zero net momentum and reduces energy loss through an anchor. The gyro can differentially cancel measurement errors from external vibration along both sensor axes. The vibration sensitivity of the balanced-mode gyroscope including structural imbalance from microfabrication reduces as the absolute difference between in-phase parasitic mode and operating mode frequencies increases. The parasitic sensing mode frequency is designed larger than the operating mode frequency to achieve both improved vibration insensitivity and shock resistivity. A single anchor is used to minimize thermoresidual stress change. We developed two gyroscope based on these design principles. The Balanced Oscillating Gyro (BOG) is a quad-mass tuning-fork rate gyroscope. The relationship between gyro design and modal characteristics is studied extensively using finite element method (FEM). The gyro is fabricated using the planar Si-on-glass (SOG) process with a device thickness of 100 micrometers. The BOG is evaluated using the first-generation analog interface circuitry. Under a frequency mismatch of 5Hz between driving and sense modes, the angle random walk (ARW) is measured to be 0.44deg/sec/sqrt(Hz). The Cylindrical Rate-Integrating Gyroscope (CING) operates in whole-angle mode. The gyro is completely axisymmetric and self-aligned to maximize mechanical isotropy. The gyro offers a large frequency ratio of ~1.7 between parasitic and the wineglass modes. The CING is fabricated using the 3D Si-on-glass (SOG) process with a device thickness of 300 micrometers. The 1st and 2nd generation CINGs operate at 18kHz and 3kHz, respectively and demonstrate a frequency mismatch of <1% and a large Q (~20,000 at 18kHz and ~100,000 at 3kHz under exact mode matching). In the rate-sensing mode, the first-generation CING (18kHz) demonstrates an Ag of 0.05, an angle random walk (ARW) of 7deg/sqrt(hr), and a bias stability of 72deg/hr without temperature compensation. In the rate-sensing mode, the second-generation CING measures an Ag of 0.0065, an ARW of 0.09deg/sqrt(hr), and a bias stability of 129deg/hr without temperature compensation. In the rate-integration mode, the second-generation CING demonstrates precession with an Ag of 0.011±0.001 under a frequency mismatch of 20~80mHz during several hours of operation.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91440/1/jycho_1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91440/2/jycho_2.pd

    CMOS systems and circuits for sub-degree per hour MEMS gyroscopes

    Get PDF
    The objective of our research is to develop system architectures and CMOS circuits that interface with high-Q silicon microgyroscopes to implement navigation-grade angular rate sensors. The MEMS sensor used in this work is an in-plane bulk-micromachined mode-matched tuning fork gyroscope (M² – TFG ), fabricated on silicon-on-insulator substrate. The use of CMOS transimpedance amplifiers (TIA) as front-ends in high-Q MEMS resonant sensors is explored. A T-network TIA is proposed as the front-end for resonant capacitive detection. The T-TIA provides on-chip transimpedance gains of 25MΩ, has a measured capacitive resolution of 0.02aF /√Hz at 15kHz, a dynamic range of 104dB in a bandwidth of 10Hz and consumes 400μW of power. A second contribution is the development of an automated scheme to adaptively bias the mechanical structure, such that the sensor is operated in the mode-matched condition. Mode-matching leverages the inherently high quality factors of the microgyroscope, resulting in significant improvement in the Brownian noise floor, electronic noise, sensitivity and bias drift of the microsensor. We developed a novel architecture that utilizes the often ignored residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching (i.e.0Hz split between the drive and sense mode frequencies), as well as electronically control the sensor bandwidth. A CMOS implementation is developed that allows mode-matching of the drive and sense frequencies of a gyroscope at a fraction of the time taken by current state of-the-art techniques. Further, this mode-matching technique allows for maintaining a controlled separation between the drive and sense resonant frequencies, providing a means of increasing sensor bandwidth and dynamic range. The mode-matching CMOS IC, implemented in a 0.5μm 2P3M process, and control algorithm have been interfaced with a 60μm thick M2−TFG to implement an angular rate sensor with bias drift as low as 0.1°/hr ℃ the lowest recorded to date for a silicon MEMS gyro.Ph.D.Committee Chair: Farrokh Ayazi; Committee Member: Jennifer Michaels; Committee Member: Levent Degertekin; Committee Member: Paul Hasler; Committee Member: W. Marshall Leac

    Design, Fabrication and Characterization of MEMS Gyroscopes Based on Frequency Modulation

    Get PDF
    Conventional amplitude modulated (AM) open loop MEMS gyroscopes experience a significant performance trade-off between having a large bandwidth or high sensitivity. It is impossible to improve both metrics at the same time without increasing the mass of the gyroscope or introducing a closed loop (force feedback) system into the device design. Introducing a closed loop system or increasing the proof mass on the other hand will surge power consumption. Consequently, it is difficult to maintain consistently high performance while scaling down the device size. Furthermore, bias stability, bias repeatability, reliability, nonlinearity and other performance metrics remain primary concerns as designers look to expand MEMS gyroscopes into areas like space, military and navigation applications. Industries and academics carried out extensive research to address these limitations in conventional AM MEMS gyroscope design. This research primarily aims to improve MEMS gyroscope performance by integrating a frequency modulated (FM) readout system into the design using a cantilever beam and microplate design. The FM resonance sensing approach has been demonstrated to provide better performance than the traditional AM sensing method in similar applications (e.g., Atomic Force Microscope). The cantilever beam MEMS gyroscope is specifically designed to minimize error sources that corrupt the Coriolis signal such as operating temperature, vibration and packaging stress. Operating temperature imposes enormous challenges to gyroscope design, introducing a thermal noise and drift that degrades device performance. The cantilever beam mass gyroscope system is free on one side and can therefore minimize noise caused by both thermal effects and packaging stress. The cantilever beam design is also robust to vibrations (it can reject vibrations by sensing the orthogonally arranged secondary gyroscope) and minimizes cross-axis sensitivity. By alleviating the negative impacts of operating environment in MEMS gyroscope design, reliable, robust and high-performance angular rate measurements can be realized, leading to a wide range of applications including dynamic vehicle control, navigation/guidance systems, and IOT applications. The FM sensing approach was also investigated using a traditional crab-leg design. Tested under the same conditions, the crab-leg design provided a direct point of comparison for assessing the performance of the cantilever beam gyroscope. To verify the feasibility of the FM detection method, these gyroscopes were fabricated using commercially available MIDIS™ process (Teledyne Dalsa Inc.), which provides 2 μm capacitive gaps and 30 μm structural layer thickness. The process employs 12 masks and hermetically sealed (10mTorr) packaging to ensure a higher quality factor. The cantilever beam gyroscope is designed such that the driving and sensing mode resonant frequency is 40.8 KHz with 0.01% mismatch. Experimental results demonstrated that the natural frequency of the first two modes shift linearly with the angular speed and demonstrate high transducer sensitivity. Both the cantilever beam and crab-leg gyroscopes showed a linear dynamic range up to 1500 deg/s, which was limited by the experimental test setup. However, we also noted that the cantilever beam design has several advantages over traditional crab-leg devices, including simpler dynamics and control, bias stability and bias repeatability. Furthermore, the single-port sensing method implemented in this research improves the electronic performance and therefore enhances sensitivity by eliminating the need to measure vibrations via a secondary mode. The single-port detection mechanism could also simplify the IC architecture. Rate table characterization at both high (110 oC) and low (22 oC) temperatures showed minimal changes in sensitivity performance even in the absence of temperature compensation mechanism and active control, verifying the improved robustness of the design concept. Due to significant die area reduction, the cantilever design can feasibly address high-volume consumer market demand for low cost, and high-volume production using a silicon wafer for the structural part. The results of this work introduce and demonstrate a new paradigm in MEMS gyroscope design, where thermal and vibration rejection capability is achieved solely by the mechanical system, negating the need for active control and compensation strategies
    • …
    corecore