31 research outputs found

    The dynamics of the pendulum suspended on the forced Duffing oscillator

    Full text link
    We investigate the dynamics of the pendulum suspended on the forced Duffing oscillator. The detailed bifurcation analysis in two parameter space (amplitude and frequency of excitation) which presents both oscillating and rotating periodic solutions of the pendulum has been performed. We identify the areas with low number of coexisting attractors in the parameter space as the coexistence of different attractors has a significant impact on the practical usage of the proposed system as a tuned mass absorber.Comment: Accepte

    Synchronous motion of two vertically excited planar elastic pendula

    Get PDF
    The dynamics of two planar elastic pendula mounted on the horizontally excited platform have been studied. We give evidence that the pendula can exhibit synchronous oscillatory and rotation motion and show that stable in-phase and anti-phase synchronous states always co-exist. The complete bifurcational scenario leading from synchronous to asynchronous motion is shown. We argue that our results are robust as they exist in the wide range of the system parameters.Comment: Submitte

    Rotating potential of a stochastic parametric pendulum

    Get PDF
    The parametric pendulum is a fruitful dynamical system manifesting some of the most interesting phenomena of nonlinear dynamics, well-known to exhibit rather complex motion including period doubling, fold and pitchfork bifurcations, let alone the global bifurcations leading to chaotic or rotational motion. In this thesis, the potential of establishing rotational motion is studied considering the bobbing motion of ocean waves as the source of excitation of a oating pendulum. The challenge within this investigation lies on the fact that waves are random, as well as their observed low frequency, characteristics which pose a broader signi cance within the study of vibrating systems. Thus, a generic study is conducted with the parametric pendulum being excited by a narrow-band stochastic process and particularly, the random phase modulation is utilized. In order to explore the dynamics of the stochastic system, Markov-chain Monte-Calro simulations are performed to acquire a view on the in uence of randomness onto the parameter regions leading to rotational response. Furthermore, the Probability Density Function of the response is calculated, applying a numerical iterative scheme to solve the total probability law, exploiting the Chapman-Kolmogorov equation inherent to Markov processes. A special case of the studied structure undergoing impacts is considered to account for extreme weather conditions and nally, a novel design is investigated experimentally, aiming to set the ground for future development

    Dynamics of a parametrically excited system with two forcing terms

    Get PDF
    Motivated by the dynamics of a trimaran, an investigation of the dynamic behaviour of a double forcing parametrically excited system is carried out. Initially, we provide an outline of the stability regions, both numerically and analytically, for the undamped linear, extended version of the Mathieu equation. This paper then examines the anticipated form of response of our proposed nonlinear damped double forcing system, where periodic and quasiperiodic routes to chaos are graphically demonstrated and compared with the case of the single vertically-driven pendulum

    Autoparametric resonance extending the bit-flip time of a cat qubit up to 0.3 s

    Full text link
    Cat qubits, for which logical ∣0⟩|0\rangle and ∣1⟩|1\rangle are coherent states ∣±α⟩|\pm\alpha\rangle of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantage so that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number ∣α∣2|\alpha|^2. Large two-photon dissipation rate κ2\kappa_2 ensures fast qubit manipulation and short error correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump and reaches a rate κ2/2π≈2 MHz\kappa_2/2\pi\approx 2~\mathrm{MHz}. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. Besides, we illustrate how the phase of a quantum superposition between ∣α⟩|\alpha\rangle and ∣−α⟩|-\alpha\rangle can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active

    Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting.

    Get PDF
    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a -3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.Engineering and Physical Sciences Research Council (Grant ID: EP/L010917/1)This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep3016

    Characterising the dynamic response of ultrasonic cutting devices

    Get PDF
    The current work begins by considering a range of common high power ultrasonic components in order to establish a standardised approach to tool design for optimum performance. The vibration behaviour of tuned components resonating longitudinally at ultrasonic frequencies around 35 kHz is modelled via finite element analysis and measured by experimental model analysis. Significant improvements in experimental validation of the models are achieved by the use of a 3D LDV, which allows modal analysis from both in-plane and out-of-plane measurement, which is critical in proposing alternative designs. The vibration characteristics of complex multiple-component systems used in ultrasonic cutting of food products are also investigated. Commonly, the design approach for ultrasonic systems neglects to account for the mutual effects of physically-coupled components in the system vibration. The design of systems also neglects the nonlinear dynamic effects which are inherent in high power systems due to the nonlinearities of piezoelectric transducers. The first issue is tackled by considering the vibration behaviour of the whole system and the influence of individual components and, particularly, offers design improvements via modification of block horns and cutting blade components, which are modelled and validated. The issue of nonlinearity is addresses by identifying the mechanisms of energy leakage into audible frequencies and characterising the common multimodal responses. For this study, design modifications focused on reducing the number of system modes occurring at frequencies below the tuned system frequency. As a consequence of these approaches, insights for the design of multiple-component systems in general are provided

    Vibration analysis and intelligent control of flexible rotor systems using smart materials

    Get PDF
    Flexible rotor-bearing system stability is a very important subject impacting the design, control, maintenance and operating safety. As the rotor bearing-system dynamic nonlinearities are significantly more prominent at higher rotating speeds, the demand for better performance through higher speeds has rendered the use of linear approaches for analysis both inadequate and ineffective. To address this need, it becomes important that nonlinear rotor-dynamic responses indicative of the causes of nonlinearity, along with the bifurcated dynamic states of instabilities, be fully studied. The objectives of this research are to study rotor-dynamic instabilities induced by mass unbalance and to use smart materials to stabilise the performance of the flexible rotor-system. A comprehensive mathematical model incorporating translational and rotational inertia, bending stiffness and gyroscopic moment is developed. The dynamic end conditions of the rotor comprising of the active bearing-induced axial force is modelled, the equations of motion are derived using Lagrange equations and the Rayleigh-Ritz method is used to study the basic phenomena on simple systems. In this thesis the axial force terms included in the equations of motion provide a means for axially directed harmonic force to be introduced into the system. The Method of Multiple Scales is applied to study the nonlinear equations obtained and their stabilities. The Dynamics 2 software is used to numerically explore the inception and progression of bifurcations suggestive of the changing rotor-dynamic state and impending instability. In the context of active control of flexible rotors, smart materials particularly SMAs and piezoelectric stack actuators are introduced. The application of shape memory alloy (SMA) elements integrated within glass epoxy composite plates and shells has resulted in the design of a novel smart bearing based on the principle of antagonistic action in this thesis. Previous work has shown that a single SMA/composite active bearing can be very effective in both altering the natural frequency of the fundamental whirl mode as well as the modal amplitude. The drawback with that design has been the disparity in the time constant between the relatively fast heating phase and the much slower cooling phase which is reliant on forced air, or some other form of cooling. This thesis presents a modified design which removes the aforementioned existing shortcomings. This form of design means that the cooling phase of one half, still using forced air, is significantly assisted by switching the other half into its heating phase, and vice versa, thereby equalising the time constants, and giving a faster push-pull load on the centrally located bearing; a loading which is termed ‘antagonistic’ in this present dissertation. The piezoelectric stack actuator provides an account of an investigation into possible dynamic interactions between two nonlinear systems, each possessing nonlinear characteristics in the frequency domain. Parametric excitations are deliberately introduced into a second flexible rotor system by means of a piezoelectric exciter to moderate the response of the pre-existing mass-unbalance vibration inherent to the rotor. The intended application area for this SMA/composite and piezoelectric technologies are in industrial rotor systems, in particular very high-speed plant, such as small light pumps, motor generators, and engines for aerospace and automotive application

    Vibration analysis of cracked aluminium plates

    Get PDF
    This research is concerned with analytical modelling of the effects of cracks in structural plates and panels within aerospace systems such as aeroplane fuselage, wing, and tail-plane structures, and, as such, is part of a larger body of research into damage detection methodologies in such systems. This study is based on generating a so-called reduced order analytical model of the behaviour of the plate panel, within which a crack with some arbitrary characteristics is present, and which is subjected to a force that causes it to vibrate. In practice such a scenario is potentially extremely dangerous as it can lead to failure, with obvious consequences. The equation that is obtained is in the form of the classical Duffing equation, in this case, the coefficients within the equation contain information about the geometrical and mass properties of the plate, the loading and boundary conditions, and the geometry, location, and potentially the orientation of the crack. This equation has been known for just over a century and has in the last few decades received very considerable attention from both the analytical dynamics community and also from the dynamical systems researchers, in particular the work of Ueda, Thompson, in the 1970s and 1980s, and Thomsen in the 1990s and beyond. An approximate analytical solution is obtained by means of the perturbation method of multiple scales. This powerful method was popularized in the 1970s by Ali H.Nayfeh, and discussed in his famous books, ‘Perturbation Methods’ (1974) and ‘Nonlinear Oscillations’ (1979, with D.T.Mook), and also by J.Murdock (1990), and M.P.Cartmell et al. (2003) and has been shown to be immensely useful for a wide range of nonlinear vibration problems. In this work it is shown that different boundary conditions can be admitted for the plate and that the modal natural frequencies are sensitive to the crack geometry. Bifurcatory behaviour of the cracked plate has then been examined numerically, for a range of parameters. The model has been tested against experimental work and against a Finite Element model, with good corroboration from both. In all events, this is a significant new result in the field and one that if implemented within a larger damage detection strategy, could be of considerable practical use

    Non-linear dynamic analysis of geared systems, part 2

    Get PDF
    A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth
    corecore