1,498 research outputs found

    On Approximability of Bounded Degree Instances of Selected Optimization Problems

    Get PDF
    In order to cope with the approximation hardness of an underlying optimization problem, it is advantageous to consider specific families of instances with properties that can be exploited to obtain efficient approximation algorithms for the restricted version of the problem with improved performance guarantees. In this thesis, we investigate the approximation complexity of selected NP-hard optimization problems restricted to instances with bounded degree, occurrence or weight parameter. Specifically, we consider the family of dense instances, where typically the average degree is bounded from below by some function of the size of the instance. Complementarily, we examine the family of sparse instances, in which the average degree is bounded from above by some fixed constant. We focus on developing new methods for proving explicit approximation hardness results for general as well as for restricted instances. The fist part of the thesis contributes to the systematic investigation of the VERTEX COVER problem in k-hypergraphs and k-partite k-hypergraphs with density and regularity constraints. We design efficient approximation algorithms for the problems with improved performance guarantees as compared to the general case. On the other hand, we prove the optimality of our approximation upper bounds under the Unique Games Conjecture or a variant. In the second part of the thesis, we study mainly the approximation hardness of restricted instances of selected global optimization problems. We establish improved or in some cases the first inapproximability thresholds for the problems considered in this thesis such as the METRIC DIMENSION problem restricted to graphs with maximum degree 3 and the (1,2)-STEINER TREE problem. We introduce a new reductions method for proving explicit approximation lower bounds for problems that are related to the TRAVELING SALESPERSON (TSP) problem. In particular, we prove the best up to now inapproximability thresholds for the general METRIC TSP problem, the ASYMMETRIC TSP problem, the SHORTEST SUPERSTRING problem, the MAXIMUM TSP problem and TSP problems with bounded metrics

    Minimum Makespan Multi-vehicle Dial-a-Ride

    Get PDF
    Dial a ride problems consist of a metric space (denoting travel time between vertices) and a set of m objects represented as source-destination pairs, where each object requires to be moved from its source to destination vertex. We consider the multi-vehicle Dial a ride problem, with each vehicle having capacity k and its own depot-vertex, where the objective is to minimize the maximum completion time (makespan) of the vehicles. We study the "preemptive" version of the problem, where an object may be left at intermediate vertices and transported by more than one vehicle, while being moved from source to destination. Our main results are an O(log^3 n)-approximation algorithm for preemptive multi-vehicle Dial a ride, and an improved O(log t)-approximation for its special case when there is no capacity constraint. We also show that the approximation ratios improve by a log-factor when the underlying metric is induced by a fixed-minor-free graph.Comment: 22 pages, 1 figure. Preliminary version appeared in ESA 200

    Optimal Lower Bounds for Universal and Differentially Private Steiner Tree and TSP

    Get PDF
    Given a metric space on n points, an {\alpha}-approximate universal algorithm for the Steiner tree problem outputs a distribution over rooted spanning trees such that for any subset X of vertices containing the root, the expected cost of the induced subtree is within an {\alpha} factor of the optimal Steiner tree cost for X. An {\alpha}-approximate differentially private algorithm for the Steiner tree problem takes as input a subset X of vertices, and outputs a tree distribution that induces a solution within an {\alpha} factor of the optimal as before, and satisfies the additional property that for any set X' that differs in a single vertex from X, the tree distributions for X and X' are "close" to each other. Universal and differentially private algorithms for TSP are defined similarly. An {\alpha}-approximate universal algorithm for the Steiner tree problem or TSP is also an {\alpha}-approximate differentially private algorithm. It is known that both problems admit O(logn)-approximate universal algorithms, and hence O(log n)-approximate differentially private algorithms as well. We prove an {\Omega}(logn) lower bound on the approximation ratio achievable for the universal Steiner tree problem and the universal TSP, matching the known upper bounds. Our lower bound for the Steiner tree problem holds even when the algorithm is allowed to output a more general solution of a distribution on paths to the root.Comment: 14 page

    Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics

    Get PDF
    Simple heuristics often show a remarkable performance in practice for optimization problems. Worst-case analysis often falls short of explaining this performance. Because of this, "beyond worst-case analysis" of algorithms has recently gained a lot of attention, including probabilistic analysis of algorithms. The instances of many optimization problems are essentially a discrete metric space. Probabilistic analysis for such metric optimization problems has nevertheless mostly been conducted on instances drawn from Euclidean space, which provides a structure that is usually heavily exploited in the analysis. However, most instances from practice are not Euclidean. Little work has been done on metric instances drawn from other, more realistic, distributions. Some initial results have been obtained by Bringmann et al. (Algorithmica, 2013), who have used random shortest path metrics on complete graphs to analyze heuristics. The goal of this paper is to generalize these findings to non-complete graphs, especially Erd\H{o}s-R\'enyi random graphs. A random shortest path metric is constructed by drawing independent random edge weights for each edge in the graph and setting the distance between every pair of vertices to the length of a shortest path between them with respect to the drawn weights. For such instances, we prove that the greedy heuristic for the minimum distance maximum matching problem, the nearest neighbor and insertion heuristics for the traveling salesman problem, and a trivial heuristic for the kk-median problem all achieve a constant expected approximation ratio. Additionally, we show a polynomial upper bound for the expected number of iterations of the 2-opt heuristic for the traveling salesman problem.Comment: An extended abstract appeared in the proceedings of WALCOM 201

    Approximation Hardness of Graphic TSP on Cubic Graphs

    Get PDF
    We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used in the paper could be also of independent interest

    New Inapproximability Bounds for TSP

    Full text link
    In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem. The best up to now known hardness of approximation bounds were 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and Vempala). We construct here two new bounded occurrence CSP reductions which improve these bounds to 123/122 and 75/74, respectively. The latter bound is the first improvement in more than a decade for the case of the asymmetric TSP. One of our main tools, which may be of independent interest, is a new construction of a bounded degree wheel amplifier used in the proof of our results

    Approximating ATSP by Relaxing Connectivity

    Full text link
    The standard LP relaxation of the asymmetric traveling salesman problem has been conjectured to have a constant integrality gap in the metric case. We prove this conjecture when restricted to shortest path metrics of node-weighted digraphs. Our arguments are constructive and give a constant factor approximation algorithm for these metrics. We remark that the considered case is more general than the directed analog of the special case of the symmetric traveling salesman problem for which there were recent improvements on Christofides' algorithm. The main idea of our approach is to first consider an easier problem obtained by significantly relaxing the general connectivity requirements into local connectivity conditions. For this relaxed problem, it is quite easy to give an algorithm with a guarantee of 3 on node-weighted shortest path metrics. More surprisingly, we then show that any algorithm (irrespective of the metric) for the relaxed problem can be turned into an algorithm for the asymmetric traveling salesman problem by only losing a small constant factor in the performance guarantee. This leaves open the intriguing task of designing a "good" algorithm for the relaxed problem on general metrics.Comment: 25 pages, 2 figures, fixed some typos in previous versio
    • …
    corecore