723 research outputs found

    A domination algorithm for {0,1}\{0,1\}-instances of the travelling salesman problem

    Get PDF
    We present an approximation algorithm for {0,1}\{0,1\}-instances of the travelling salesman problem which performs well with respect to combinatorial dominance. More precisely, we give a polynomial-time algorithm which has domination ratio 1n1/291-n^{-1/29}. In other words, given a {0,1}\{0,1\}-edge-weighting of the complete graph KnK_n on nn vertices, our algorithm outputs a Hamilton cycle HH^* of KnK_n with the following property: the proportion of Hamilton cycles of KnK_n whose weight is smaller than that of HH^* is at most n1/29n^{-1/29}. Our analysis is based on a martingale approach. Previously, the best result in this direction was a polynomial-time algorithm with domination ratio 1/2o(1)1/2-o(1) for arbitrary edge-weights. We also prove a hardness result showing that, if the Exponential Time Hypothesis holds, there exists a constant CC such that n1/29n^{-1/29} cannot be replaced by exp((logn)C)\exp(-(\log n)^C) in the result above.Comment: 29 pages (final version to appear in Random Structures and Algorithms

    The Traveling Salesman Problem Under Squared Euclidean Distances

    Get PDF
    Let PP be a set of points in Rd\mathbb{R}^d, and let α1\alpha \ge 1 be a real number. We define the distance between two points p,qPp,q\in P as pqα|pq|^{\alpha}, where pq|pq| denotes the standard Euclidean distance between pp and qq. We denote the traveling salesman problem under this distance function by TSP(d,αd,\alpha). We design a 5-approximation algorithm for TSP(2,2) and generalize this result to obtain an approximation factor of 3α1+6α/33^{\alpha-1}+\sqrt{6}^{\alpha}/3 for d=2d=2 and all α2\alpha\ge2. We also study the variant Rev-TSP of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-TSP(2,α)(2,\alpha) with α2\alpha\ge2, and we show that Rev-TSP(d,α)(d, \alpha) is APX-hard if d3d\ge3 and α>1\alpha>1. The APX-hardness proof carries over to TSP(d,α)(d, \alpha) for the same parameter ranges.Comment: 12 pages, 4 figures. (v2) Minor linguistic change

    Approximation Hardness of Graphic TSP on Cubic Graphs

    Get PDF
    We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used in the paper could be also of independent interest

    Dial a Ride from k-forest

    Full text link
    The k-forest problem is a common generalization of both the k-MST and the dense-kk-subgraph problems. Formally, given a metric space on nn vertices VV, with mm demand pairs V×V\subseteq V \times V and a ``target'' kmk\le m, the goal is to find a minimum cost subgraph that connects at least kk demand pairs. In this paper, we give an O(min{n,k})O(\min\{\sqrt{n},\sqrt{k}\})-approximation algorithm for kk-forest, improving on the previous best ratio of O(n2/3logn)O(n^{2/3}\log n) by Segev & Segev. We then apply our algorithm for k-forest to obtain approximation algorithms for several Dial-a-Ride problems. The basic Dial-a-Ride problem is the following: given an nn point metric space with mm objects each with its own source and destination, and a vehicle capable of carrying at most kk objects at any time, find the minimum length tour that uses this vehicle to move each object from its source to destination. We prove that an α\alpha-approximation algorithm for the kk-forest problem implies an O(αlog2n)O(\alpha\cdot\log^2n)-approximation algorithm for Dial-a-Ride. Using our results for kk-forest, we get an O(min{n,k}log2n)O(\min\{\sqrt{n},\sqrt{k}\}\cdot\log^2 n)- approximation algorithm for Dial-a-Ride. The only previous result known for Dial-a-Ride was an O(klogn)O(\sqrt{k}\log n)-approximation by Charikar & Raghavachari; our results give a different proof of a similar approximation guarantee--in fact, when the vehicle capacity kk is large, we give a slight improvement on their results.Comment: Preliminary version in Proc. European Symposium on Algorithms, 200

    Minimum Makespan Multi-vehicle Dial-a-Ride

    Get PDF
    Dial a ride problems consist of a metric space (denoting travel time between vertices) and a set of m objects represented as source-destination pairs, where each object requires to be moved from its source to destination vertex. We consider the multi-vehicle Dial a ride problem, with each vehicle having capacity k and its own depot-vertex, where the objective is to minimize the maximum completion time (makespan) of the vehicles. We study the "preemptive" version of the problem, where an object may be left at intermediate vertices and transported by more than one vehicle, while being moved from source to destination. Our main results are an O(log^3 n)-approximation algorithm for preemptive multi-vehicle Dial a ride, and an improved O(log t)-approximation for its special case when there is no capacity constraint. We also show that the approximation ratios improve by a log-factor when the underlying metric is induced by a fixed-minor-free graph.Comment: 22 pages, 1 figure. Preliminary version appeared in ESA 200

    The Traveling Salesman Problem: Low-Dimensionality Implies a Polynomial Time Approximation Scheme

    Full text link
    The Traveling Salesman Problem (TSP) is among the most famous NP-hard optimization problems. We design for this problem a randomized polynomial-time algorithm that computes a (1+eps)-approximation to the optimal tour, for any fixed eps>0, in TSP instances that form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora (A-98) and Mitchell (M-99) prove that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus, our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimensionality of the space and not on its specific geometry. This result resolves a problem that has been open since the quasi-polynomial time algorithm of Talwar (T-04)

    On Approximability of Bounded Degree Instances of Selected Optimization Problems

    Get PDF
    In order to cope with the approximation hardness of an underlying optimization problem, it is advantageous to consider specific families of instances with properties that can be exploited to obtain efficient approximation algorithms for the restricted version of the problem with improved performance guarantees. In this thesis, we investigate the approximation complexity of selected NP-hard optimization problems restricted to instances with bounded degree, occurrence or weight parameter. Specifically, we consider the family of dense instances, where typically the average degree is bounded from below by some function of the size of the instance. Complementarily, we examine the family of sparse instances, in which the average degree is bounded from above by some fixed constant. We focus on developing new methods for proving explicit approximation hardness results for general as well as for restricted instances. The fist part of the thesis contributes to the systematic investigation of the VERTEX COVER problem in k-hypergraphs and k-partite k-hypergraphs with density and regularity constraints. We design efficient approximation algorithms for the problems with improved performance guarantees as compared to the general case. On the other hand, we prove the optimality of our approximation upper bounds under the Unique Games Conjecture or a variant. In the second part of the thesis, we study mainly the approximation hardness of restricted instances of selected global optimization problems. We establish improved or in some cases the first inapproximability thresholds for the problems considered in this thesis such as the METRIC DIMENSION problem restricted to graphs with maximum degree 3 and the (1,2)-STEINER TREE problem. We introduce a new reductions method for proving explicit approximation lower bounds for problems that are related to the TRAVELING SALESPERSON (TSP) problem. In particular, we prove the best up to now inapproximability thresholds for the general METRIC TSP problem, the ASYMMETRIC TSP problem, the SHORTEST SUPERSTRING problem, the MAXIMUM TSP problem and TSP problems with bounded metrics
    corecore