74,302 research outputs found

    Approximating Cumulative Pebbling Cost Is Unique Games Hard

    Get PDF
    The cumulative pebbling complexity of a directed acyclic graph GG is defined as cc(G)=minPiPi\mathsf{cc}(G) = \min_P \sum_i |P_i|, where the minimum is taken over all legal (parallel) black pebblings of GG and Pi|P_i| denotes the number of pebbles on the graph during round ii. Intuitively, cc(G)\mathsf{cc}(G) captures the amortized Space-Time complexity of pebbling mm copies of GG in parallel. The cumulative pebbling complexity of a graph GG is of particular interest in the field of cryptography as cc(G)\mathsf{cc}(G) is tightly related to the amortized Area-Time complexity of the Data-Independent Memory-Hard Function (iMHF) fG,Hf_{G,H} [AS15] defined using a constant indegree directed acyclic graph (DAG) GG and a random oracle H()H(\cdot). A secure iMHF should have amortized Space-Time complexity as high as possible, e.g., to deter brute-force password attacker who wants to find xx such that fG,H(x)=hf_{G,H}(x) = h. Thus, to analyze the (in)security of a candidate iMHF fG,Hf_{G,H}, it is crucial to estimate the value cc(G)\mathsf{cc}(G) but currently, upper and lower bounds for leading iMHF candidates differ by several orders of magnitude. Blocki and Zhou recently showed that it is NP\mathsf{NP}-Hard to compute cc(G)\mathsf{cc}(G), but their techniques do not even rule out an efficient (1+ε)(1+\varepsilon)-approximation algorithm for any constant ε>0\varepsilon>0. We show that for any constant c>0c > 0, it is Unique Games hard to approximate cc(G)\mathsf{cc}(G) to within a factor of cc. (See the paper for the full abstract.)Comment: 28 pages, updated figures and corrected typo

    NP-hardness of circuit minimization for multi-output functions

    Get PDF
    Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n ? {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless ? = ??, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions

    Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review

    Get PDF
    The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage
    corecore