112,451 research outputs found

    Optimising the Solovay-Kitaev algorithm

    Full text link
    The Solovay-Kitaev algorithm is the standard method used for approximating arbitrary single-qubit gates for fault-tolerant quantum computation. In this paper we introduce a technique called "search space expansion", which modifies the initial stage of the Solovay-Kitaev algorithm, increasing the length of the possible approximating sequences but without requiring an exhaustive search over all possible sequences. We show that our technique, combined with a GNAT geometric tree search outputs gate sequences that are almost an order of magnitude smaller for the same level of accuracy. This therefore significantly reduces the error correction requirements for quantum algorithms on encoded fault-tolerant hardware.Comment: 9 page

    The Power of Asymmetry in Binary Hashing

    Full text link
    When approximating binary similarity using the hamming distance between short binary hashes, we show that even if the similarity is symmetric, we can have shorter and more accurate hashes by using two distinct code maps. I.e. by approximating the similarity between xx and xx' as the hamming distance between f(x)f(x) and g(x)g(x'), for two distinct binary codes f,gf,g, rather than as the hamming distance between f(x)f(x) and f(x)f(x').Comment: Accepted to NIPS 2013, 9 pages, 5 figure

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author
    corecore