1,164 research outputs found

    Can coercive formulations lead to fast and accurate solution of the Helmholtz equation?

    Full text link
    A new, coercive formulation of the Helmholtz equation was introduced in [Moiola, Spence, SIAM Rev. 2014]. In this paper we investigate hh-version Galerkin discretisations of this formulation, and the iterative solution of the resulting linear systems. We find that the coercive formulation behaves similarly to the standard formulation in terms of the pollution effect (i.e. to maintain accuracy as k→∞k\to\infty, hh must decrease with kk at the same rate as for the standard formulation). We prove kk-explicit bounds on the number of GMRES iterations required to solve the linear system of the new formulation when it is preconditioned with a prescribed symmetric positive-definite matrix. Even though the number of iterations grows with kk, these are the first such rigorous bounds on the number of GMRES iterations for a preconditioned formulation of the Helmholtz equation, where the preconditioner is a symmetric positive-definite matrix.Comment: 27 pages, 7 figure

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations F′(un;un+1−un)=g−F(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    A Quasi-Variational Inequality Problem Arising in the Modeling of Growing Sandpiles

    Full text link
    Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized mixed formulation involving both the primal (sand surface) and dual (sand flux) variables. We derive, analyse and compare two methods for the approximation, and numerical solution, of this mixed problem. We prove subsequence convergence of both approximations, as the mesh discretization parameters tend to zero; and hence prove existence of a solution to this mixed model and the associated regularized quasi-variational inequality problem. One of these numerical approximations, in which the flux is approximated by the divergence-conforming lowest order Raviart-Thomas element, leads to an efficient algorithm to compute not only the evolving pile surface, but also the flux of pouring sand. Results of our numerical experiments confirm the validity of the regularization employed.Comment: 51 p., low resolution fig

    Optimal design of plane elastic membranes using the convexified F\"{o}ppl's model

    Full text link
    This work puts forth a new optimal design formulation for planar elastic membranes. The goal is to minimize the membrane's compliance through choosing the material distribution described by a positive Radon measure. The deformation of the membrane itself is governed by the convexified F\"{o}ppl's model. The uniqueness of this model lies in the convexity of its variational formulation despite the inherent nonlinearity of the strain-displacement relation. It makes it possible to rewrite the optimization problem as a pair of mutually dual convex variational problems. In the primal problem a linear functional is maximized with respect to displacement functions while enforcing that point-wisely the strain lies in an unbounded closed convex set. The dual problem consists in finding equilibrated stresses that are to minimize a convex integral functional of linear growth defined on the space of Radon measures. The pair of problems is analysed: existence and regularity results are provided, together with the system of optimality criteria. To demonstrate the computational potential of the pair, a finite element scheme is developed around it. Upon reformulation to a conic-quadratic & semi-definite programming problem, the method is employed to produce numerical simulations for several load case scenarios.Comment: 55 page
    • …
    corecore