5,691 research outputs found

    Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers

    Full text link
    Flow- and context-sensitive points-to analysis is difficult to scale; for top-down approaches, the problem centers on repeated analysis of the same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not scaled while preserving precision. We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by the following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes redundant memory updates and minimizes control flow (without over-approximating data dependence between memory updates), and call inlining enhances the opportunities of these optimizations. We devise novel operations and data flow analyses for these optimizations. Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability in program analysis is not the amount of data but the amount of control flow that it may be subjected to in search of precision. The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason why the GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158kLoC for C programs

    Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs

    Full text link
    We design and implement a parallel algebraic multigrid method for isotropic graph Laplacian problems on multicore Graphical Processing Units (GPUs). The proposed AMG method is based on the aggregation framework. The setup phase of the algorithm uses a parallel maximal independent set algorithm in forming aggregates and the resulting coarse level hierarchy is then used in a K-cycle iteration solve phase with a â„“1\ell^1-Jacobi smoother. Numerical tests of a parallel implementation of the method for graphics processors are presented to demonstrate its effectiveness.Comment: 18 pages, 3 figure

    A Similarity Measure for GPU Kernel Subgraph Matching

    Full text link
    Accelerator architectures specialize in executing SIMD (single instruction, multiple data) in lockstep. Because the majority of CUDA applications are parallelized loops, control flow information can provide an in-depth characterization of a kernel. CUDAflow is a tool that statically separates CUDA binaries into basic block regions and dynamically measures instruction and basic block frequencies. CUDAflow captures this information in a control flow graph (CFG) and performs subgraph matching across various kernel's CFGs to gain insights to an application's resource requirements, based on the shape and traversal of the graph, instruction operations executed and registers allocated, among other information. The utility of CUDAflow is demonstrated with SHOC and Rodinia application case studies on a variety of GPU architectures, revealing novel thread divergence characteristics that facilitates end users, autotuners and compilers in generating high performing code
    • …
    corecore