19,595 research outputs found

    Rational Krylov for Stieltjes matrix functions: convergence and pole selection

    Full text link
    Evaluating the action of a matrix function on a vector, that is x=f(M)vx=f(\mathcal M)v, is an ubiquitous task in applications. When M\mathcal M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the poles of the rational Krylov method for approximating xx when f(z)f(z) is either Cauchy-Stieltjes or Laplace-Stieltjes (or, which is equivalent, completely monotonic) and M\mathcal M is a positive definite matrix. Relying on the same tools used to analyze the generic situation, we then focus on the case M=IABTI\mathcal M=I \otimes A - B^T \otimes I, and vv obtained vectorizing a low-rank matrix; this finds application, for instance, in solving fractional diffusion equation on two-dimensional tensor grids. We see how to leverage tensorized Krylov subspaces to exploit the Kronecker structure and we introduce an error analysis for the numerical approximation of xx. Pole selection strategies with explicit convergence bounds are given also in this case

    Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection

    Get PDF
    Matrix functions are a central topic of linear algebra, and problems of their numerical approximation appear increasingly often in scientific computing. We review various rational Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi method, but we also discuss the nonorthogonal generalized Leja point (or PAIN) method. The issue of optimal pole selection for rational Krylov methods applied for approximating the resolvent and exponential function, and functions of Markov type, is treated in some detail

    Approximation of functions of large matrices with Kronecker structure

    Full text link
    We consider the numerical approximation of f(A)bf({\cal A})b where bRNb\in{\mathbb R}^{N} and A\cal A is the sum of Kronecker products, that is A=M2I+IM1RN×N{\cal A}=M_2 \otimes I + I \otimes M_1\in{\mathbb R}^{N\times N}. Here ff is a regular function such that f(A)f({\cal A}) is well defined. We derive a computational strategy that significantly lowers the memory requirements and computational efforts of the standard approximations, with special emphasis on the exponential function, for which the new procedure becomes particularly advantageous. Our findings are illustrated by numerical experiments with typical functions used in applications

    A block Krylov subspace time-exact solution method for linear ODE systems

    Get PDF
    We propose a time-exact Krylov-subspace-based method for solving linear ODE (ordinary differential equation) systems of the form y=Ay+g(t)y'=-Ay + g(t) and y=Ay+g(t)y''=-Ay + g(t), where y(t)y(t) is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of the source term g(t)g(t), constructed with the help of the truncated SVD (singular value decomposition). The second stage is a special residual-based block Krylov subspace method. The accuracy of the method is only restricted by the accuracy of the piecewise polynomial approximation and by the error of the block Krylov process. Since both errors can, in principle, be made arbitrarily small, this yields, at some costs, a time-exact method. Numerical experiments are presented to demonstrate efficiency of the new method, as compared to an exponential time integrator with Krylov subspace matrix function evaluations

    Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices

    Get PDF
    We derive a priori residual-type bounds for the Arnoldi approximation of a matrix function and a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the decay behavior of the entries of functions of banded matrices. Specifically, we will use a priori decay bounds for the entries of functions of banded non-Hermitian matrices by using Faber polynomial series. Numerical experiments illustrate the quality of the results

    A black-box rational Arnoldi variant for Cauchy-Stieltjes matrix functions

    Get PDF
    Rational Arnoldi is a powerful method for approximating functions of large sparse matrices times a vector. The selection of asymptotically optimal parameters for this method is crucial for its fast convergence. We present and investigate a novel strategy for the automated parameter selection when the function to be approximated is of Cauchy-Stieltjes (or Markov) type, such as the matrix square root or the logarithm. The performance of this approach is demonstrated by numerical examples involving symmetric and nonsymmetric matrices. These examples suggest that our black-box method performs at least as well, and typically better, as the standard rational Arnoldi method with parameters being manually optimized for a given matrix
    corecore