227 research outputs found

    Special Issue on Recent Advance on Mobile Sensor Systems

    Full text link
    Shu, L.; Vasilakos, AV.; Lloret, J.; Pathan, AK. (2011). Special Issue on Recent Advance on Mobile Sensor Systems. Telecommunication Systems. doi:10.1007/s11235-011-9560-y

    A software framework for alleviating the effects of MAC-aware jamming attacks in wireless access networks

    Get PDF
    The IEEE 802.11 protocol inherently provides the same long-term throughput to all the clients associated with a given access point (AP). In this paper, we first identify a clever, low-power jamming attack that can take advantage of this behavioral trait: the placement of a lowpower jammer in a way that it affects a single legitimate client can cause starvation to all the other clients. In other words, the total throughput provided by the corresponding AP is drastically degraded. To fight against this attack, we design FIJI, a cross-layer anti-jamming system that detects such intelligent jammers and mitigates their impact on network performance. FIJI looks for anomalies in the AP load distribution to efficiently perform jammer detection. It then makes decisions with regards to optimally shaping the traffic such that: (a) the clients that are not explicitly jammed are shielded from experiencing starvation and, (b) the jammed clients receive the maximum possible throughput under the given conditions. We implement FIJI in real hardware; we evaluate its efficacy through experiments on two wireless testbeds, under different traffic scenarios, network densities and jammer locations. We perform experiments both indoors and outdoors, and we consider both WLAN and mesh deployments. Our measurements suggest that FIJI detects such jammers in realtime and alleviates their impact by allocating the available bandwidth in a fair and efficient way. © Springer Science+Business Media

    LifeTime-aware Backpressure - a new delay-enhanced Backpressure-based routing protocol

    Get PDF
    Dynamic Backpressure is a highly desirable family of routing protocols known for their attractive mathematical proprieties. However, these protocols suffer from a high end-to-end delay making them inefficient for real-time traffic with strict endto-end delay requirements. In this paper, we address this issue by proposing a new adjustable and fully distributed Backpressurebased scheme with low queue management complexity, named LifeTime-Aware BackPressure (LTA-BP). The novelty in the proposed scheme consists in introducing the urgency level as a new metric for service differentiation among the competing traffic flows in the network. Our scheme not just significantly improves the quality of service provided for real-time traffic with stringent end-to-end delay constraints, but interestingly protects also the flows with softer delay requirements from being totally starved. The proposed scheme has been evaluated and compared against other state of the art routing protocol, using computer simulation, and the obtained results show its superiority in terms of the achieved end-to-end delay and throughput

    Enhanced Multimedia Exchanges over the Internet

    Get PDF
    Although the Internet was not originally designed for exchanging multimedia streams, consumers heavily depend on it for audiovisual data delivery. The intermittent nature of multimedia traffic, the unguaranteed underlying communication infrastructure, and dynamic user behavior collectively result in the degradation of Quality-of-Service (QoS) and Quality-of-Experience (QoE) perceived by end-users. Consequently, the volume of signalling messages is inevitably increased to compensate for the degradation of the desired service qualities. Improved multimedia services could leverage adaptive streaming as well as blockchain-based solutions to enhance media-rich experiences over the Internet at the cost of increased signalling volume. Many recent studies in the literature provide signalling reduction and blockchain-based methods for authenticated media access over the Internet while utilizing resources quasi-efficiently. To further increase the efficiency of multimedia communications, novel signalling overhead and content access latency reduction solutions are investigated in this dissertation including: (1) the first two research topics utilize steganography to reduce signalling bandwidth utilization while increasing the capacity of the multimedia network; and (2) the third research topic utilizes multimedia content access request management schemes to guarantee throughput values for servicing users, end-devices, and the network. Signalling of multimedia streaming is generated at every layer of the communication protocol stack; At the highest layer, segment requests are generated, and at the lower layers, byte tracking messages are exchanged. Through leveraging steganography, essential signalling information is encoded within multimedia payloads to reduce the amount of resources consumed by non-payload data. The first steganographic solution hides signalling messages within multimedia payloads, thereby freeing intermediate node buffers from queuing non-payload packets. Consequently, source nodes are capable of delivering control information to receiving nodes at no additional network overhead. A utility function is designed to minimize the volume of overhead exchanged while minimizing visual artifacts. Therefore, the proposed scheme is designed to leverage the fidelity of the multimedia stream to reduce the largest amount of control overhead with the lowest negative visual impact. The second steganographic solution enables protocol translation through embedding packet header information within payload data to alternatively utilize lightweight headers. The protocol translator leverages a proposed utility function to enable the maximum number of translations while maintaining QoS and QoE requirements in terms of packet throughput and playback bit-rate. As the number of multimedia users and sources increases, decentralized content access and management over a blockchain-based system is inevitable. Blockchain technologies suffer from large processing latencies; consequently reducing the throughput of a multimedia network. Reducing blockchain-based access latencies is therefore essential to maintaining a decentralized scalable model with seamless functionality and efficient utilization of resources. Adapting blockchains to feeless applications will then port the utility of ledger-based networks to audiovisual applications in a faultless manner. The proposed transaction processing scheme will enable ledger maintainers in sustaining desired throughputs necessary for delivering expected QoS and QoE values for decentralized audiovisual platforms. A block slicing algorithm is designed to ensure that the ledger maintenance strategy is benefiting the operations of the blockchain-based multimedia network. Using the proposed algorithm, the throughput and latency of operations within the multimedia network are then maintained at a desired level

    MTADF: Multi Hop Traffic Aware Data For Warding For Congestion Control In Wireless Sensor Networks

    Get PDF
    In the past few years there is a remarkable change in the field of wireless sensor networks. Congestion occurs when there is a heavy traffic in the network. The heavy traffic in the network leads to wastage of energy and packet loss. Traffic Aware Dynamic Routing algorithm mitigates congestion by using one hop neighbor routing, hence throughput of the network is low. This paper proposed a Multi hop based Data Forwarding Technique to mitigate congestion. Queue length field and depth potential field play a major role to divert the traffic in the network to the alternate paths. The high traffic load leads to data queue overflow in the sensor nodes, these results in loss of important information about important events. Multi hop Traffic-Aware Dynamic Routing algorithm addresses congestion using depth potential field and queue length potential field. The algorithm forwards data packets around the congestion areas and scatters the excessive along multiple paths. The nodes with less load are efficiently utilized in response to congestion. The main aspect of the algorithm is to construct two independent potential fields using depth and queue length. Queue length field solves the traffic-aware problem. Depth field creates a backbone to forward packets to the sink. Both fields are combined to yield a hybrid potential field to make dynamic decision for data forwarding. Simulations are conducted to evaluate the performance of our proposed algorithm and our proposed scheme performs better compared to previous work

    Analysis and Validation of The Effect of Various Queueing Configurations to the End-to-end Throughput of Multi-Hop Wireless Network

    Get PDF
    A multi-hop wireless network is created by connecting multiple wireless access points (APs) as the backhaul of the network to increase the network coverage. The issue of spatial bias, unbalanced network performance of end-to-end throughput and delay occurs when the total offered load of the associated stations to the backhaul exceeds the wireless link capacity. Station associated to the access point with more hops away from the gateway will experience a significant amount of delay and lower end-to-end throughput compared to the station with fewer hops to the gateway. The equality of local successful transmit probability and mesh successful transmit probability in congested APs, which is the main root cause of the spatial bias problem, is modelled and validated. If the packet arrival ratio of local over mesh ingress interface is larger than the respective queue length ratio, the mesh ingress interface successful transmit probability will be higher than the local ingress interface successful transmit probability and vice-versa. By controlling the ratio of queue lengths, stations associated to the access point with more hops away from the gateway are given higher transmit opportunity, and therefore the spatial bias problem in multi-hop wireless network can be alleviate

    Cyber-security of Cyber-Physical Systems (CPS)

    Get PDF
    This master's thesis reports on security of a Cyber-Physical System (CPS) in the department of industrial engineering at UiT campus Narvik. The CPS targets connecting distinctive robots in the laboratory in the department of industrial engineering. The ultimate objective of the department is to propose such a system for the industry. The thesis focuses on the network architecture of the CPS and the availability principle of security. This report states three research questions that are aimed to be answered. The questions are: what a secure CPS architecture for the purpose of the existing system is, how far the current state of system is from the defined secure architecture, and how to reach the proposed architecture. Among the three question, the first questions has absorbed the most attention of this project. The reason is that a secure and robust architecture would provide a touchstone that makes answering the second and third questions easier. In order to answer the questions, Cisco SAFE for IoT threat defense for manufacturing approach is chosen. The architectural approach of Cisco SAFE for IoT, with similarities to the Cisco SAFE for secure campus networks, provides a secure network architecture based on business flows/use cases and defining related security capabilities. This approach supplies examples of scenarios, business flows, and security capabilities that encouraged selecting it. It should be noted that Cisco suggests its proprietary technologies for security capabilities. According to the need of the project owners and the fact that allocating funds are not favorable for them, all the suggested security capabilities are intended to be open-source, replacing the costly Cisco-proprietary suggestions. Utilizing the approach and the computer networking fundamentals resulted in the proposed secure network architecture. The proposed architecture is used as a touchstone to evaluate the existing state of the CPS in the department of industrial engineering. Following that, the required security measures are presented to approach the system to the proposed architecture. Attempting to apply the method of Cisco SAFE, the identities using the system and their specific activities are presented as the business flow. Based on the defined business flow, the required security capabilities are selected. Finally, utilizing the provided examples of Cisco SAFE documentations, a complete network architecture is generated. The architecture consists of five zones that include the main components, security capabilities, and networking devices (such as switches and access points). Investigating the current state of the CPS and evaluating it by the proposed architecture and the computer networking fundamentals, helped identifying six important shortcomings. Developing on the noted shortcomings, and identification of open-source alternatives for the Cisco-proprietary technologies, nine security measures are proposed. The goal is to perform all the security measures. Thus, the implementations and solutions for each security measure is noted at the end of the presented results. The security measures that require purchasing a device were not considered in this project. The reasons for this decision are the time-consuming process of selecting an option among different alternatives, and the prior need for grasping the features of the network with the proposed security capabilities; features such as amount and type of traffic inside the network, and possible incidents detected using an Intrusion Detection Prevention System. The attempts to construct a secure cyber-physical system is an everlasting procedure. New threats, best practices, guidelines, and standards are introduced on a daily basis. Moreover, business needs could vary from time to time. Therefore, the selected security life-cycle is required and encouraged to be used in order to supply a robust lasting cyber-physical system
    corecore