929 research outputs found

    A Stackelberg Strategy for Routing Flow over Time

    Full text link
    Routing games are used to to understand the impact of individual users' decisions on network efficiency. Most prior work on routing games uses a simplified model of network flow where all flow exists simultaneously, and users care about either their maximum delay or their total delay. Both of these measures are surrogates for measuring how long it takes to get all of a user's traffic through the network. We attempt a more direct study of how competition affects network efficiency by examining routing games in a flow over time model. We give an efficiently computable Stackelberg strategy for this model and show that the competitive equilibrium under this strategy is no worse than a small constant times the optimal, for two natural measures of optimality

    Arc Routing with Time-Dependent Travel Times and Paths

    Full text link
    Vehicle routing algorithms usually reformulate the road network into a complete graph in which each arc represents the shortest path between two locations. Studies on time-dependent routing followed this model and therefore defined the speed functions on the complete graph. We argue that this model is often inadequate, in particular for arc routing problems involving services on edges of a road network. To fill this gap, we formally define the time-dependent capacitated arc routing problem (TDCARP), with travel and service speed functions given directly at the network level. Under these assumptions, the quickest path between locations can change over time, leading to a complex problem that challenges the capabilities of current solution methods. We introduce effective algorithms for preprocessing quickest paths in a closed form, efficient data structures for travel time queries during routing optimization, as well as heuristic and exact solution approaches for the TDCARP. Our heuristic uses the hybrid genetic search principle with tailored solution-decoding algorithms and lower bounds for filtering moves. Our branch-and-price algorithm exploits dedicated pricing routines, heuristic dominance rules and completion bounds to find optimal solutions for problem counting up to 75 services. Based on these algorithms, we measure the benefits of time-dependent routing optimization for different levels of travel-speed data accuracy

    Optimization of time-dependent routing problems considering dynamic paths and fuel consumption

    Get PDF
    Ces derniĂšres annĂ©es, le transport de marchandises est devenu un dĂ©fi logistique Ă  multiples facettes. L’immense volume de fret a considĂ©rablement augmentĂ© le flux de marchandises dans tous les modes de transport. MalgrĂ© le rĂŽle vital du transport de marchandises dans le dĂ©veloppement Ă©conomique, il a Ă©galement des rĂ©percussions nĂ©gatives sur l’environnement et la santĂ© humaine. Dans les zones locales et rĂ©gionales, une partie importante des livraisons de marchandises est transportĂ©e par camions, qui Ă©mettent une grande quantitĂ© de polluants. Le Transport routier de marchandises est un contributeur majeur aux Ă©missions de gaz Ă  effet de serre (GES) et Ă  la consommation de carburant. Au Canada, les principaux rĂ©seaux routiers continuent de faire face Ă  des problĂšmes de congestion. Pour rĂ©duire significativement l’impact des Ă©missions de GES reliĂ©es au transport de marchandises sur l’environnement, de nouvelles stratĂ©gies de planification directement liĂ©es aux opĂ©rations de routage sont nĂ©cessaires aux niveaux opĂ©rationnel, environnemental et temporel. Dans les grandes zones urbaines, les camions doivent voyager Ă  la vitesse imposĂ©e par la circulation. Les embouteillages ont des consĂ©quences dĂ©favorables sur la vitesse, le temps de dĂ©placement et les Ă©missions de GES, notamment Ă  certaines pĂ©riodes de la journĂ©e. Cette variabilitĂ© de la vitesse dans le temps a un impact significatif sur le routage et la planification du transport. Dans une perspective plus large, notre recherche aborde les ProblĂšmes de distribution temporels (Time-Dependent Distribution Problems – TDDP) en considĂ©rant des chemins dynamiques dans le temps et les Ă©missions de GES. ConsidĂ©rant que la vitesse d’un vĂ©hicule varie en fonction de la congestion dans le temps, l’objectif est de minimiser la fonction de coĂ»t de transport total intĂ©grant les coĂ»ts des conducteurs et des Ă©missions de GES tout en respectant les contraintes de capacitĂ© et les restrictions de temps de service. En outre, les informations gĂ©ographiques et de trafic peuvent ĂȘtre utilisĂ©es pour construire des multigraphes modĂ©lisant la flexibilitĂ© des chemins sur les grands rĂ©seaux routiers, en tant qu’extension du rĂ©seau classique des clients. Le rĂ©seau physique sous-jacent entre chaque paire de clients pour chaque expĂ©dition est explicitement considĂ©rĂ© pour trouver des chemins de connexion. Les dĂ©cisions de sĂ©lection de chemins complĂštent celles de routage, affectant le coĂ»t global, les Ă©missions de GES, et le temps de parcours entre les nƓuds. Alors que l’espace de recherche augmente, la rĂ©solution des ProblĂšmes de distribution temporels prenant en compte les chemins dynamiques et les vitesses variables dans le temps offre une nouvelle possibilitĂ© d’amĂ©liorer l’efficacitĂ© des plans de transport... Mots clĂ©s : Routage dĂ©pendant du temps; chemins les plus rapides dĂ©pendant du temps; congestion; rĂ©seau routier; heuristique; Ă©missions de gaz Ă  effet de serre; modĂšles d’émission; apprentissage supervisĂ©In recent years, freight transportation has evolved into a multi-faceted logistics challenge. The immense volume of freight has considerably increased the flow of commodities in all transport modes. Despite the vital role of freight transportation in the economic development, it also negatively impacts both the environment and human health. At the local and regional areas, a significant portion of goods delivery is transported by trucks, which emit a large amount of pollutants. Road freight transportation is a major contributor to greenhouse gas (GHG) emissions and to fuel consumption. To reduce the significant impact of freight transportation emissions on environment, new alternative planning and coordination strategies directly related to routing and scheduling operations are required at the operational, environmental and temporal dimensions. In large urban areas, trucks must travel at the speed imposed by traffic, and congestion events have major adverse consequences on speed level, travel time and GHG emissions particularly at certain periods of day. This variability in speed over time has a significant impact on routing and scheduling. From a broader perspective, our research addresses Time-Dependent Distribution Problems (TDDPs) considering dynamic paths and GHG emissions. Considering that vehicle speeds vary according to time-dependent congestion, the goal is to minimize the total travel cost function incorporating driver and GHG emissions costs while respecting capacity constraints and service time restrictions. Further, geographical and traffic information can be used to construct a multigraph modeling path flexibility on large road networks, as an extension to the classical customers network. The underlying physical sub-network between each pair of customers for each shipment is explicitly considered to find connecting road paths. Path selection decisions complement routing ones, impacting the overall cost, GHG emissions, the travel time between nodes, and thus the set of a feasible time-dependent least cost paths. While the search space increases, solving TDDPs considering dynamic paths and time-varying speeds may provide a new scope for enhancing the effectiveness of route plans. One way to reduce emissions is to consider congestion and being able to route traffic around it. Accounting for and avoiding congested paths is possible as the required traffic data is available and, at the same time, has a great potential for both energy and cost savings. Hence, we perform a large empirical analysis of historical traffic and shipping data. Therefore, we introduce the Time-dependent Quickest Path Problem with Emission Minimization, in which the objective function comprises GHG emissions, driver and congestion costs. Travel costs are impacted by traffic due to changing congestion levels depending on the time of the day, vehicle types and carried load. We also develop time-dependent lower and upper bounds, which are both accurate and fast to compute. Computational experiments are performed on real-life instances that incorporate the variation of traffic throughout the day. We then study the quality of obtained paths considering time-varying speeds over the one based only on fixed speeds... Keywords : Time-dependent routing; time-dependent quickest paths; traffic congestion; road network; heuristic; greenhouse gas emissions; emission models; supervised learning

    Quickest Flows Over Time

    Get PDF
    Flows over time (also called dynamic flows) generalize standard network flows by introducing an element of time. They naturally model problems where travel and transmission are not instantaneous. Traditionally, flows over time are solved in time‐expanded networks that contain one copy of the original network for each discrete time step. While this method makes available the whole algorithmic toolbox developed for static flows, its main and often fatal drawback is the enormous size of the time‐expanded network. We present several approaches for coping with this difficulty. First, inspired by the work of Ford and Fulkerson on maximal s‐t‐flows over time (or “maximal dynamic s‐t‐flows”), we show that static length‐bounded flows lead to provably good multicommodity flows over time. Second, we investigate “condensed” time‐expanded networks which rely on a rougher discretization of time. We prove that a solution of arbitrary precision can be computed in polynomial time through an appropriate discretization leading to a condensed time‐expanded network of polynomial size. In particular, our approach yields fully polynomial‐time approximation schemes for the NP‐hard quickest min‐cost and multicommodity flow problems. For single commodity problems, we show that storage of flow at intermediate nodes is unnecessary, and our approximation schemes do not use any

    Safety Aware Vehicle Routing Algorithm, A Weighted Sum Approach

    Get PDF
    Driving is an essential part of work life for many people. Although driving can be enjoyable and pleasant, it can also be stressful and dangerous. Many people around the world are killed or seriously injured while driving. According to the World Health Organization (WHO), about 1.25 million people die each year as a result of road traffic crashes. Road traffic injuries are also the leading cause of death among young people. To prevent traffic injuries, governments must address road safety issues, an endeavor that requires involvement from multiple sectors (transport, police, health, education). Effective intervention should include designing safer infrastructure and incorporating road safety features into land-use and transport planning. The aim of this research is to design an algorithm to help drivers find the safest path between two locations. Such an algorithm can be used to find the safest path for a school bus travelling between bus stops, a heavy truck carrying inflammable materials, poison gas, or explosive cargo, or any driver who wants to avoid roads with higher numbers of accidents. In these applications, a path is safe if the danger factor on either side of the path is no more than a given upper bound. Since travel time is another important consideration for all drivers, the suggested algorithm utilizes traffic data to consider travel time when searching for the safest route. The key achievements of the work presented in this thesis are summarized as follows. Defining the Safest and Quickest Path Problem (SQPP), in which the goal is to find a short and low-risk path between two locations in a road network at a given point of time. Current methods for representing road networks, travel times and safety level were investigated. Two approaches to defining road safety level were identified, and some methods in each approach were presented. An intensive review of traffic routing algorithms was conducted to identify the most well-known algorithms. An empirical study was also conducted to evaluate the performance of some routing algorithms, using metrics such as scalability and computation time. This research approaches the SQPP problem as a bi-objective Shortest Path Problem (SPP), for which the proposed Safety Aware Algorithm (SAA) aims to output one quickest and safest route. The experiments using this algorithm demonstrate its efficacy and practical applicability
    • 

    corecore