2,286 research outputs found

    On accuracy of PDF divergence estimators and their applicability to representative data sampling

    Get PDF
    Generalisation error estimation is an important issue in machine learning. Cross-validation traditionally used for this purpose requires building multiple models and repeating the whole procedure many times in order to produce reliable error estimates. It is however possible to accurately estimate the error using only a single model, if the training and test data are chosen appropriately. This paper investigates the possibility of using various probability density function divergence measures for the purpose of representative data sampling. As it turned out, the first difficulty one needs to deal with is estimation of the divergence itself. In contrast to other publications on this subject, the experimental results provided in this study show that in many cases it is not possible unless samples consisting of thousands of instances are used. Exhaustive experiments on the divergence guided representative data sampling have been performed using 26 publicly available benchmark datasets and 70 PDF divergence estimators, and their results have been analysed and discussed

    Physically inspired methods and development of data-driven predictive systems.

    Get PDF
    Traditionally building of predictive models is perceived as a combination of both science and art. Although the designer of a predictive system effectively follows a prescribed procedure, his domain knowledge as well as expertise and intuition in the field of machine learning are often irreplaceable. However, in many practical situations it is possible to build well–performing predictive systems by following a rigorous methodology and offsetting not only the lack of domain knowledge but also partial lack of expertise and intuition, by computational power. The generalised predictive model development cycle discussed in this thesis is an example of such methodology, which despite being computationally expensive, has been successfully applied to real–world problems. The proposed predictive system design cycle is a purely data–driven approach. The quality of data used to build the system is thus of crucial importance. In practice however, the data is rarely perfect. Common problems include missing values, high dimensionality or very limited amount of labelled exemplars. In order to address these issues, this work investigated and exploited inspirations coming from physics. The novel use of well–established physical models in the form of potential fields, has resulted in derivation of a comprehensive Electrostatic Field Classification Framework for supervised and semi–supervised learning from incomplete data. Although the computational power constantly becomes cheaper and more accessible, it is not infinite. Therefore efficient techniques able to exploit finite amount of predictive information content of the data and limit the computational requirements of the resource–hungry predictive system design procedure are very desirable. In designing such techniques this work once again investigated and exploited inspirations coming from physics. By using an analogy with a set of interacting particles and the resulting Information Theoretic Learning framework, the Density Preserving Sampling technique has been derived. This technique acts as a computationally efficient alternative for cross–validation, which fits well within the proposed methodology. All methods derived in this thesis have been thoroughly tested on a number of benchmark datasets. The proposed generalised predictive model design cycle has been successfully applied to two real–world environmental problems, in which a comparative study of Density Preserving Sampling and cross–validation has also been performed confirming great potential of the proposed methods

    Density Preserving Sampling: Robust and Efficient Alternative to Cross-validation for Error Estimation

    Get PDF
    Estimation of the generalization ability of a classi- fication or regression model is an important issue, as it indicates the expected performance on previously unseen data and is also used for model selection. Currently used generalization error estimation procedures, such as cross-validation (CV) or bootstrap, are stochastic and, thus, require multiple repetitions in order to produce reliable results, which can be computationally expensive, if not prohibitive. The correntropy-inspired density- preserving sampling (DPS) procedure proposed in this paper eliminates the need for repeating the error estimation procedure by dividing the available data into subsets that are guaranteed to be representative of the input dataset. This allows the production of low-variance error estimates with an accuracy comparable to 10 times repeated CV at a fraction of the computations required by CV. This method can also be used for model ranking and selection. This paper derives the DPS procedure and investigates its usability and performance using a set of public benchmark datasets and standard classifier

    Physically inspired methods and development of data-driven predictive systems

    Get PDF
    Traditionally building of predictive models is perceived as a combination of both science and art. Although the designer of a predictive system effectively follows a prescribed procedure, his domain knowledge as well as expertise and intuition in the field of machine learning are often irreplaceable. However, in many practical situations it is possible to build well–performing predictive systems by following a rigorous methodology and offsetting not only the lack of domain knowledge but also partial lack of expertise and intuition, by computational power. The generalised predictive model development cycle discussed in this thesis is an example of such methodology, which despite being computationally expensive, has been successfully applied to real–world problems. The proposed predictive system design cycle is a purely data–driven approach. The quality of data used to build the system is thus of crucial importance. In practice however, the data is rarely perfect. Common problems include missing values, high dimensionality or very limited amount of labelled exemplars. In order to address these issues, this work investigated and exploited inspirations coming from physics. The novel use of well–established physical models in the form of potential fields, has resulted in derivation of a comprehensive Electrostatic Field Classification Framework for supervised and semi–supervised learning from incomplete data. Although the computational power constantly becomes cheaper and more accessible, it is not infinite. Therefore efficient techniques able to exploit finite amount of predictive information content of the data and limit the computational requirements of the resource–hungry predictive system design procedure are very desirable. In designing such techniques this work once again investigated and exploited inspirations coming from physics. By using an analogy with a set of interacting particles and the resulting Information Theoretic Learning framework, the Density Preserving Sampling technique has been derived. This technique acts as a computationally efficient alternative for cross–validation, which fits well within the proposed methodology. All methods derived in this thesis have been thoroughly tested on a number of benchmark datasets. The proposed generalised predictive model design cycle has been successfully applied to two real–world environmental problems, in which a comparative study of Density Preserving Sampling and cross–validation has also been performed confirming great potential of the proposed methods.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Inverse Problems and Data Assimilation

    Full text link
    These notes are designed with the aim of providing a clear and concise introduction to the subjects of Inverse Problems and Data Assimilation, and their inter-relations, together with citations to some relevant literature in this area. The first half of the notes is dedicated to studying the Bayesian framework for inverse problems. Techniques such as importance sampling and Markov Chain Monte Carlo (MCMC) methods are introduced; these methods have the desirable property that in the limit of an infinite number of samples they reproduce the full posterior distribution. Since it is often computationally intensive to implement these methods, especially in high dimensional problems, approximate techniques such as approximating the posterior by a Dirac or a Gaussian distribution are discussed. The second half of the notes cover data assimilation. This refers to a particular class of inverse problems in which the unknown parameter is the initial condition of a dynamical system, and in the stochastic dynamics case the subsequent states of the system, and the data comprises partial and noisy observations of that (possibly stochastic) dynamical system. We will also demonstrate that methods developed in data assimilation may be employed to study generic inverse problems, by introducing an artificial time to generate a sequence of probability measures interpolating from the prior to the posterior

    Inference of geostatistical hyperparameters with the correlated pseudo-marginal method

    Get PDF
    We consider non-linear Bayesian inversion problems targeting the geostatistical hyperparameters of a random field describing hydrogeological or geophysical properties given hydrogeological or geophysical data. This problem is of particular importance in the non-ergodic setting as there are no analytical upscaling relationships linking the data to the hyperparameters, such as, mean, standard deviation, and integral scales. Full inversion of the hyperparameters and the local properties of the field (typically involving many thousands of unknowns) brings substantial computational challenges, such that simplifying model assumptions (e.g., homogeneity or ergodicity) are typically made. To prevent the errors resulting from such simplified assumptions while also circumventing the burden of high-dimensional full inversions, we use a pseudo-marginal Metropolis–Hastings algorithm that treats the random field as latent variables. In this random effects model, the intractable likelihood of observing the data given the hyperparameters is estimated by Monte Carlo averaging over realizations of the random field. To increase the efficiency of the method, low-variance approximations of the likelihood ratio are obtained by using importance sampling and by correlating the samples used in the proposed and current steps of the Markov chain. We assess the performance of this correlated pseudo-marginal method by considering two representative inversion problems involving diffusion-based and wave-based physics, respectively, in which we infer the hyperparameters of (1) hydraulic conductivity fields using apparent hydraulic conductivity data in a data-poor setting and (2) fracture aperture fields using borehole ground-penetrating radar (GPR) reflection data in a more data-rich setting. For the first test case, we find that the correlated pseudo-marginal method generates similar estimates of the geostatistical mean as classical rejection sampling, while an inversion assuming ergodicity provides biased estimates. For the second test case, we find that the correlated pseudo-marginal method estimates the hyperparameters well, while rejection sampling is computationally unfeasible and a simplified model assuming homogeneity leads to biased estimates
    corecore