182,489 research outputs found

    Random gradient-free minimization of convex functions

    Get PDF
    In this paper, we prove the complexity bounds for methods of Convex Optimization based only on computation of the function value. The search directions of our schemes are normally distributed random Gaussian vectors. It appears that such methods usually need at most n times more iterations than the standard gradient methods, where n is the dimension of the space of variables. This conclusion is true both for nonsmooth and smooth problems. For the later class, we present also an accelerated scheme with the expected rate of convergence O(n[ exp ]2 /k[ exp ]2), where k is the iteration counter. For Stochastic Optimization, we propose a zero-order scheme and justify its expected rate of convergence O(n/k[ exp ]1/2). We give also some bounds for the rate of convergence of the random gradient-free methods to stationary points of nonconvex functions, both for smooth and nonsmooth cases. Our theoretical results are supported by preliminary computational experiments.convex optimization, stochastic optimization, derivative-free methods, random methods, complexity bounds

    On the convergence rate issues of general Markov search for global minimum

    Get PDF
    This paper focuses on the convergence rate problem of general Markov search for global minimum. Many of existing methods are designed for overcoming a very hard problem which is how to efficiently localize and approximate the global minimum of the multimodal function f while all information which can be used are the f-values evaluated for generated points. Because such methods use poor information on f, the following problem may occur: the closer to the optimum, the harder to generate a “better” (in sense of the cost function) state. This paper explores this issue on theoretical basis. To do so the concept of lazy convergence for a globally convergent method is introduced: a globally convergent method is called lazy if the probability of generating a better state from one step to another goes to zero with time. Such issue is the cause of very undesired convergence properties. This paper shows when an optimization method has to be lazy and the presented general results cover, in particular, the class of simulated annealing algorithms and monotone random search. Furthermore, some attention is put on accelerated random search and evolution strategies

    Proximal boosting and its acceleration

    Full text link
    Gradient boosting is a prediction method that iteratively combines weak learners to produce a complex and accurate model. From an optimization point of view, the learning procedure of gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build upon the proximal point algorithm when the empirical risk to minimize is not differentiable to introduce a novel boosting approach, called proximal boosting. Besides being motivated by non-differentiable optimization, the proposed algorithm benefits from Nesterov's acceleration in the same way as gradient boosting [Biau et al., 2018]. This leads to a variant, called accelerated proximal boosting. Advantages of leveraging proximal methods for boosting are illustrated by numerical experiments on simulated and real-world data. In particular, we exhibit a favorable comparison over gradient boosting regarding convergence rate and prediction accuracy
    corecore