12 research outputs found

    Dynamic Integer Sets with Optimal Rank, Select, and Predecessor Search

    Full text link
    We present a data structure representing a dynamic set S of w-bit integers on a w-bit word RAM. With |S|=n and w > log n and space O(n), we support the following standard operations in O(log n / log w) time: - insert(x) sets S = S + {x}. - delete(x) sets S = S - {x}. - predecessor(x) returns max{y in S | y= x}. - rank(x) returns #{y in S | y< x}. - select(i) returns y in S with rank(y)=i, if any. Our O(log n/log w) bound is optimal for dynamic rank and select, matching a lower bound of Fredman and Saks [STOC'89]. When the word length is large, our time bound is also optimal for dynamic predecessor, matching a static lower bound of Beame and Fich [STOC'99] whenever log n/log w=O(log w/loglog w). Technically, the most interesting aspect of our data structure is that it supports all the above operations in constant time for sets of size n=w^{O(1)}. This resolves a main open problem of Ajtai, Komlos, and Fredman [FOCS'83]. Ajtai et al. presented such a data structure in Yao's abstract cell-probe model with w-bit cells/words, but pointed out that the functions used could not be implemented. As a partial solution to the problem, Fredman and Willard [STOC'90] introduced a fusion node that could handle queries in constant time, but used polynomial time on the updates. We call our small set data structure a dynamic fusion node as it does both queries and updates in constant time.Comment: Presented with different formatting in Proceedings of the 55nd IEEE Symposium on Foundations of Computer Science (FOCS), 2014, pp. 166--175. The new version fixes a bug in one of the bounds stated for predecessor search, pointed out to me by Djamal Belazzougu

    Integer priority queues with decrease key in constant time and the single source shortest paths problem

    Get PDF
    AbstractWe consider Fibonacci heap style integer priority queues supporting find-min, insert, and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys supports delete in O(loglogn) time. If the integers are in the range [0,N), we can also support delete in O(loglogN) time.Even for the special case of monotone priority queues, where the minimum has to be non-decreasing, the best previous bounds on delete were O((logn)1/(3−ε)) and O((logN)1/(4−ε)). These previous bounds used both randomization and amortization. Our new bounds are deterministic, worst-case, with no restriction to monotonicity, and exponentially faster.As a classical application, for a directed graph with n nodes and m edges with non-negative integer weights, we get single source shortest paths in O(m+nloglogn) time, or O(m+nloglogC) if C is the maximal edge weight. The latter solves an open problem of Ahuja, Mehlhorn, Orlin, and Tarjan from 1990

    Answering Spatial Multiple-Set Intersection Queries Using 2-3 Cuckoo Hash-Filters

    Full text link
    We show how to answer spatial multiple-set intersection queries in O(n(log w)/w + kt) expected time, where n is the total size of the t sets involved in the query, w is the number of bits in a memory word, k is the output size, and c is any fixed constant. This improves the asymptotic performance over previous solutions and is based on an interesting data structure, known as 2-3 cuckoo hash-filters. Our results apply in the word-RAM model (or practical RAM model), which allows for constant-time bit-parallel operations, such as bitwise AND, OR, NOT, and MSB (most-significant 1-bit), as exist in modern CPUs and GPUs. Our solutions apply to any multiple-set intersection queries in spatial data sets that can be reduced to one-dimensional range queries, such as spatial join queries for one-dimensional points or sets of points stored along space-filling curves, which are used in GIS applications.Comment: Full version of paper from 2017 ACM SIGSPATIAL International Conference on Advances in Geographic Information System

    New Algorithms and Lower Bounds for Sequential-Access Data Compression

    Get PDF
    This thesis concerns sequential-access data compression, i.e., by algorithms that read the input one or more times from beginning to end. In one chapter we consider adaptive prefix coding, for which we must read the input character by character, outputting each character's self-delimiting codeword before reading the next one. We show how to encode and decode each character in constant worst-case time while producing an encoding whose length is worst-case optimal. In another chapter we consider one-pass compression with memory bounded in terms of the alphabet size and context length, and prove a nearly tight tradeoff between the amount of memory we can use and the quality of the compression we can achieve. In a third chapter we consider compression in the read/write streams model, which allows us passes and memory both polylogarithmic in the size of the input. We first show how to achieve universal compression using only one pass over one stream. We then show that one stream is not sufficient for achieving good grammar-based compression. Finally, we show that two streams are necessary and sufficient for achieving entropy-only bounds.Comment: draft of PhD thesi

    Directed shortest paths via approximate cost balancing

    Get PDF
    We present an O(nm) algorithm for all-pairs shortest paths computations in a directed graph with n nodes, m arcs, and nonnegative integer arc costs. This matches the complexity bound attained by Thorup [31] for the all-pairs problems in undirected graphs. The main insight is that shortest paths problems with approximately balanced directed cost functions can be solved similarly to the undirected case. The algorithm finds an approximately balanced reduced cost function in an O(m √ n log n) preprocessing step. Using these reduced costs, every shortest path query can be solved in O(m) time using an adaptation of Thorup’s component hierarchy method. The balancing result can also be applied to the ℓ∞-matrix balancing problem

    Ranked Queries in Index Data Structures

    Get PDF
    A ranked query is a query which returns the top-ranking elements of a set, sorted by rank, where the rank corresponds to some sort of preference function defined on the items of the set. This thesis investigates the problem of adding rank query capabilities to several index data structures on top of their existing functionality. First, we introduce the concept of rank-sensitive data structures, based on the existing concept of output-sensitive data structures. Rank-sensitive data structures are output-sensitive data structures which are additionally given a ranking of the items stored and as a result of a query return only the k best-ranking items satisfying the given query, sorted according to rank, where k is specified at query time. We explore several ways of adding rank-sensitivity to different data structures and the different trade-offs which this incurs. The second part of the work deals with the first efficient dynamic version of the Cartesian tree – a data structure intrinsically related to rank queries
    corecore