5,603 research outputs found

    Finitely generated free Heyting algebras via Birkhoff duality and coalgebra

    Get PDF
    Algebras axiomatized entirely by rank 1 axioms are algebras for a functor and thus the free algebras can be obtained by a direct limit process. Dually, the final coalgebras can be obtained by an inverse limit process. In order to explore the limits of this method we look at Heyting algebras which have mixed rank 0-1 axiomatizations. We will see that Heyting algebras are special in that they are almost rank 1 axiomatized and can be handled by a slight variant of the rank 1 coalgebraic methods

    Topological representation for monadic implication algebras

    Get PDF
    In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.Fil: Abad, Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    Constructive version of Boolean algebra

    Full text link
    The notion of overlap algebra introduced by G. Sambin provides a constructive version of complete Boolean algebra. Here we first show some properties concerning overlap algebras: we prove that the notion of overlap morphism corresponds classically to that of map preserving arbitrary joins; we provide a description of atomic set-based overlap algebras in the language of formal topology, thus giving a predicative characterization of discrete locales; we show that the power-collection of a set is the free overlap algebra join-generated from the set. Then, we generalize the concept of overlap algebra and overlap morphism in various ways to provide constructive versions of the category of Boolean algebras with maps preserving arbitrary existing joins.Comment: 22 page

    Topos Quantum Logic and Mixed States

    Get PDF
    The topos approach to the formulation of physical theories includes a new form of quantum logic. We present this topos quantum logic, including some new results, and compare it to standard quantum logic, all with an eye to conceptual issues. In particular, we show that topos quantum logic is distributive, multi-valued, contextual and intuitionistic. It incorporates superposition without being based on linear structures, has a built-in form of coarse-graining which automatically avoids interpretational problems usually associated with the conjunction of propositions about incompatible physical quantities, and provides a material implication that is lacking from standard quantum logic. Importantly, topos quantum logic comes with a clear geometrical underpinning. The representation of pure states and truth-value assignments are discussed. It is briefly shown how mixed states fit into this approach.Comment: 25 pages; to appear in Electronic Notes in Theoretical Computer Science (6th Workshop on Quantum Physics and Logic, QPL VI, Oxford, 8.--9. April 2009), eds. B. Coecke, P. Panangaden, P. Selinger (2010

    Lattice of closure endomorphisms of a Hilbert algebra

    Full text link
    A closure endomorphism of a Hilbert algebra A is a mapping that is simultaneously an endomorphism of and a closure operator on A. It is known that the set CE of all closure endomorphisms of A is a distributive lattice where the meet of two elements is defined pointwise and their join is given by their composition. This lattice is shown in the paper to be isomorphic to the lattice of certain filters of A, anti-isomorphic to the lattice of certain closure retracts of A, and compactly generated. The set of compact elements of CE coincides with the adjoint semilattice of A, conditions under which two Hilbert algebras have isomorphic adjoint semilattices (equivalently, minimal Brouwerian extensions) are discussed. Several consequences are drawn also for implication algebras.Comment: 16 pages, no figures, submitted to Algebra Universalis (under review since 24.11.2015

    Some notes on Esakia spaces

    Full text link
    Under Stone/Priestley duality for distributive lattices, Esakia spaces correspond to Heyting algebras which leads to the well-known dual equivalence between the category of Esakia spaces and morphisms on one side and the category of Heyting algebras and Heyting morphisms on the other. Based on the technique of idempotent split completion, we give a simple proof of a more general result involving certain relations rather then functions as morphisms. We also extend the notion of Esakia space to all stably locally compact spaces and show that these spaces define the idempotent split completion of compact Hausdorff spaces. Finally, we exhibit connections with split algebras for related monads
    corecore