13,916 research outputs found

    On A Simpler and Faster Derivation of Single Use Reliability Mean and Variance for Model-Based Statistical Testing

    Get PDF
    Markov chain usage-based statistical testing has proved sound and effective in providing audit trails of evidence in certifying software-intensive systems. The system end-toend reliability is derived analytically in closed form, following an arc-based Bayesian model. System reliability is represented by an important statistic called single use reliability, and defined as the probability of a randomly selected use being successful. This paper continues our earlier work on a simpler and faster derivation of the single use reliability mean, and proposes a new derivation of the single use reliability variance by applying a well-known theorem and eliminating the need to compute the second moments of arc failure probabilities. Our new results complete a new analysis that could be shown to be simpler, faster, and more direct while also rendering a more intuitive explanation. Our new theory is illustrated with three simple Markov chain usage models with manual derivations and experimental results

    A Simpler and More Direct Derivation of System Reliability Using Markov Chain Usage Models

    Get PDF
    Markov chain usage-based statistical testing has been around for more than two decades, and proved sound and effective in providing audit trails of evidence in certifying software-intensive systems. The system end-to-end reliability is derived analytically in closed form, following an arc-based Bayesian model. System reliability is represented by an important statistic called single use reliability, and defined as the probability of a randomly selected use being successful. This paper reviews the analytical derivation of the single use reliability mean, and proposes a simpler, faster, and more direct way to compute the expected value that renders an intuitive explanation. The new derivation is illustrated with two examples

    Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States

    Get PDF
    The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled activation subunits, while the DA was modeled using uncoupled activation subunits. Implementations of DA with coupled subunits, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable - allowing an easy and efficient DA implementation. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods.Comment: 32 text pages, 10 figures, 1 supplementary text + figur

    Shrinkage Estimators in Online Experiments

    Full text link
    We develop and analyze empirical Bayes Stein-type estimators for use in the estimation of causal effects in large-scale online experiments. While online experiments are generally thought to be distinguished by their large sample size, we focus on the multiplicity of treatment groups. The typical analysis practice is to use simple differences-in-means (perhaps with covariate adjustment) as if all treatment arms were independent. In this work we develop consistent, small bias, shrinkage estimators for this setting. In addition to achieving lower mean squared error these estimators retain important frequentist properties such as coverage under most reasonable scenarios. Modern sequential methods of experimentation and optimization such as multi-armed bandit optimization (where treatment allocations adapt over time to prior responses) benefit from the use of our shrinkage estimators. Exploration under empirical Bayes focuses more efficiently on near-optimal arms, improving the resulting decisions made under uncertainty. We demonstrate these properties by examining seventeen large-scale experiments conducted on Facebook from April to June 2017

    Iterative Bayesian Learning for Crowdsourced Regression

    Full text link
    Crowdsourcing platforms emerged as popular venues for purchasing human intelligence at low cost for large volume of tasks. As many low-paid workers are prone to give noisy answers, a common practice is to add redundancy by assigning multiple workers to each task and then simply average out these answers. However, to fully harness the wisdom of the crowd, one needs to learn the heterogeneous quality of each worker. We resolve this fundamental challenge in crowdsourced regression tasks, i.e., the answer takes continuous labels, where identifying good or bad workers becomes much more non-trivial compared to a classification setting of discrete labels. In particular, we introduce a Bayesian iterative scheme and show that it provably achieves the optimal mean squared error. Our evaluations on synthetic and real-world datasets support our theoretical results and show the superiority of the proposed scheme

    International conference on software engineering and knowledge engineering: Session chair

    Get PDF
    The Thirtieth International Conference on Software Engineering and Knowledge Engineering (SEKE 2018) will be held at the Hotel Pullman, San Francisco Bay, USA, from July 1 to July 3, 2018. SEKE2018 will also be dedicated in memory of Professor Lofti Zadeh, a great scholar, pioneer and leader in fuzzy sets theory and soft computing. The conference aims at bringing together experts in software engineering and knowledge engineering to discuss on relevant results in either software engineering or knowledge engineering or both. Special emphasis will be put on the transference of methods between both domains. The theme this year is soft computing in software engineering & knowledge engineering. Submission of papers and demos are both welcome
    corecore