240,400 research outputs found

    Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis

    Full text link
    We introduce a data-driven approach to complete partial 3D shapes through a combination of volumetric deep neural networks and 3D shape synthesis. From a partially-scanned input shape, our method first infers a low-resolution -- but complete -- output. To this end, we introduce a 3D-Encoder-Predictor Network (3D-EPN) which is composed of 3D convolutional layers. The network is trained to predict and fill in missing data, and operates on an implicit surface representation that encodes both known and unknown space. This allows us to predict global structure in unknown areas at high accuracy. We then correlate these intermediary results with 3D geometry from a shape database at test time. In a final pass, we propose a patch-based 3D shape synthesis method that imposes the 3D geometry from these retrieved shapes as constraints on the coarsely-completed mesh. This synthesis process enables us to reconstruct fine-scale detail and generate high-resolution output while respecting the global mesh structure obtained by the 3D-EPN. Although our 3D-EPN outperforms state-of-the-art completion method, the main contribution in our work lies in the combination of a data-driven shape predictor and analytic 3D shape synthesis. In our results, we show extensive evaluations on a newly-introduced shape completion benchmark for both real-world and synthetic data

    GRASS: Generative Recursive Autoencoders for Shape Structures

    Full text link
    We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.Comment: Corresponding author: Kai Xu ([email protected]

    Survey on Controlable Image Synthesis with Deep Learning

    Full text link
    Image synthesis has attracted emerging research interests in academic and industry communities. Deep learning technologies especially the generative models greatly inspired controllable image synthesis approaches and applications, which aim to generate particular visual contents with latent prompts. In order to further investigate low-level controllable image synthesis problem which is crucial for fine image rendering and editing tasks, we present a survey of some recent works on 3D controllable image synthesis using deep learning. We first introduce the datasets and evaluation indicators for 3D controllable image synthesis. Then, we review the state-of-the-art research for geometrically controllable image synthesis in two aspects: 1) Viewpoint/pose-controllable image synthesis; 2) Structure/shape-controllable image synthesis. Furthermore, the photometrically controllable image synthesis approaches are also reviewed for 3D re-lighting researches. While the emphasis is on 3D controllable image synthesis algorithms, the related applications, products and resources are also briefly summarized for practitioners.Comment: 19 pages, 17 figure

    TextCraft: Zero-Shot Generation of High-Fidelity and Diverse Shapes from Text

    Full text link
    Language is one of the primary means by which we describe the 3D world around us. While rapid progress has been made in text-to-2D-image synthesis, similar progress in text-to-3D-shape synthesis has been hindered by the lack of paired (text, shape) data. Moreover, extant methods for text-to-shape generation have limited shape diversity and fidelity. We introduce TextCraft, a method to address these limitations by producing high-fidelity and diverse 3D shapes without the need for (text, shape) pairs for training. TextCraft achieves this by using CLIP and using a multi-resolution approach by first generating in a low-dimensional latent space and then upscaling to a higher resolution, improving the fidelity of the generated shape. To improve shape diversity, we use a discrete latent space which is modelled using a bidirectional transformer conditioned on the interchangeable image-text embedding space induced by CLIP. Moreover, we present a novel variant of classifier-free guidance, which further improves the accuracy-diversity trade-off. Finally, we perform extensive experiments that demonstrate that TextCraft outperforms state-of-the-art baselines

    Controllable 3D Face Synthesis with Conditional Generative Occupancy Fields

    Full text link
    Capitalizing on the recent advances in image generation models, existing controllable face image synthesis methods are able to generate high-fidelity images with some levels of controllability, e.g., controlling the shapes, expressions, textures, and poses of the generated face images. However, these methods focus on 2D image generative models, which are prone to producing inconsistent face images under large expression and pose changes. In this paper, we propose a new NeRF-based conditional 3D face synthesis framework, which enables 3D controllability over the generated face images by imposing explicit 3D conditions from 3D face priors. At its core is a conditional Generative Occupancy Field (cGOF) that effectively enforces the shape of the generated face to commit to a given 3D Morphable Model (3DMM) mesh. To achieve accurate control over fine-grained 3D face shapes of the synthesized image, we additionally incorporate a 3D landmark loss as well as a volume warping loss into our synthesis algorithm. Experiments validate the effectiveness of the proposed method, which is able to generate high-fidelity face images and shows more precise 3D controllability than state-of-the-art 2D-based controllable face synthesis methods. Find code and demo at https://keqiangsun.github.io/projects/cgof
    corecore