2,593 research outputs found

    Coloring d-Embeddable k-Uniform Hypergraphs

    Full text link
    This paper extends the scenario of the Four Color Theorem in the following way. Let H(d,k) be the set of all k-uniform hypergraphs that can be (linearly) embedded into R^d. We investigate lower and upper bounds on the maximum (weak and strong) chromatic number of hypergraphs in H(d,k). For example, we can prove that for d>2 there are hypergraphs in H(2d-3,d) on n vertices whose weak chromatic number is Omega(log n/log log n), whereas the weak chromatic number for n-vertex hypergraphs in H(d,d) is bounded by O(n^((d-2)/(d-1))) for d>2.Comment: 18 page

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(V(H)r1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    The chromatic spectrum of 3-uniform bi-hypergraphs

    Get PDF
    Let S={n1,n2,...,nt}S=\{n_1,n_2,...,n_t\} be a finite set of positive integers with min(S)3\min(S)\geq 3 and t2t\geq 2. For any positive integers s1,s2,...,sts_1,s_2,...,s_t, we construct a family of 3-uniform bi-hypergraphs H{\cal H} with the feasible set SS and rni=si,i=1,2,...,tr_{n_i}=s_i, i=1,2,...,t, where each rnir_{n_i} is the nin_ith component of the chromatic spectrum of H{\cal H}. As a result, we solve one open problem for 3-uniform bi-hypergraphs proposed by Bujt\'{a}s and Tuza in 2008. Moreover, we find a family of sub-hypergraphs with the same feasible set and the same chromatic spectrum as it's own. In particular, we obtain a small upper bound on the minimum number of vertices in 3-uniform bi-hypergraphs with any given feasible set

    Generalisation : graphs and colourings

    Get PDF
    The interaction between practice and theory in mathematics is a central theme. Many mathematical structures and theories result from the formalisation of a real problem. Graph Theory is rich with such examples. The graph structure itself was formalised by Leonard Euler in the quest to solve the problem of the Bridges of Königsberg. Once a structure is formalised, and results are proven, the mathematician seeks to generalise. This can be considered as one of the main praxis in mathematics. The idea of generalisation will be illustrated through graph colouring. This idea also results from a classic problem, in which it was well known by topographers that four colours suffice to colour any map such that no countries sharing a border receive the same colour. The proof of this theorem eluded mathematicians for centuries and was proven in 1976. Generalisation of graphs to hypergraphs, and variations on the colouring theme will be discussed, as well as applications in other disciplines.peer-reviewe
    corecore