1,524 research outputs found

    Improving Energy Efficiency in MANETs by Multi-Path Routing

    Full text link
    Some multi-path routing algorithm in MANET, simultaneously send information to the destination through several directions to reduce end-to-end delay. In all these algorithms, the sent traffic through a path affects the adjacent path and unintentionally increases the delay due to the use of adjacent paths. Because, there are repetitive competitions among neighboring nodes, in order to obtain the joint channel in adjacent paths. The represented algorithm in this study tries to discover the distinct paths between source and destination nodes with using Omni directional antennas, to send information through these simultaneously. For this purpose, the number of active neighbors is counted in each direction with using a strategy. These criterions are effectively used to select routes. Proposed algorithm is based on AODV routing algorithm, and in the end it is compared with AOMDV, AODVM, and IZM-DSR algorithms which are multi-path routing algorithms based on AODV and DSR. Simulation results show that using the proposed algorithm creates a significant improvement in energy efficiency and reducing end-to-end delay

    Electronically-switched Directional Antennas for Low-power Wireless Networks: A Prototype-driven Evaluation

    Get PDF
    We study the benefits of electronically-switched directional antennas in low-power wireless networks. This antenna technology may improve energy efficiency by increasing the communication range and by alleviating contention in directions other than the destination, but in principle requires a dedicated network stack. Unlike most existing works, we start by characterizing a real-world antenna prototype, and apply this to an existing low-power wireless stack, which we adapt with minimal changes. Our results show that: i) the combination of a low-cost directional antenna and a conventional network stack already brings significant performance improvements, e.g., nearly halving the radio-on time per delivered packet; ii) the margin of improvement available to alternative clean-slate protocol designs is similarly large and concentrated in the control rather than the data plane; iii) by artificially modifying our antenna's link-layer model, we can point at further potential benefits opened by different antenna designs

    A distributed scheme to detect wormhole attacks in mobile wireless sensor networks

    Get PDF
    Due to mostly being unattended, sensor nodes become open to physical attacks such as wormhole attack, which is our focus in this paper. Various solutions are proposed for wormhole attacks in sensor networks, but only a few of them take mobility of sensor nodes into account. We propose a distributed wormhole detection scheme for mobile wireless sensor networks in which mobility of sensor nodes is utilized to estimate two network features (i.e. network node density, standard deviation in network node density) through using neighboring information in a local manner. Wormhole attack is detected via observing anomalies in the neighbor nodes’ behaviors based on the estimated network features and the neighboring information. We analyze the performance of proposed scheme via simulations. The results show that our scheme achieves a detection rate up to 100% with very small false positive rate (at most 1.5%) if the system parameters are chosen accordingly. Moreover, our solution requires neither additional hardware nor tight clock synchronization which are both costly for sensor networks
    • …
    corecore