16 research outputs found

    Level Set Methods for MRE Image Processing and Analysis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Nonlinear Evolutionary PDE-Based Refinement of Optical Flow

    Full text link
    The goal of this paper is to propose two nonlinear variational models for obtaining a refined motion estimation from an image sequence. Both the proposed models can be considered as a part of a generalized framework for an accurate estimation of physics-based flow fields such as rotational and fluid flow. The first model is novel in the sense that it is divided into two phases: the first phase obtains a crude estimate of the optical flow and then the second phase refines this estimate using additional constraints. The correctness of this model is proved using an Evolutionary PDE approach. The second model achieves the same refinement as the first model, but in a standard manner, using a single functional. A special feature of our models is that they permit us to provide efficient numerical implementations through the first-order primaldual Chambolle-Pock scheme. Both the models are compared in the context of accurate estimation of angle by performing an anisotropic regularization of the divergence and curl of the flow respectively. We observe that, although both the models obtain the same level of accuracy, the two-phase model is more efficient. In fact, we empirically demonstrate that the single-phase and the two-phase models have convergence rates of order O(1/N2)O(1/N^2) and O(1/N)O(1/N) respectively

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Modern Regularization Methods for Inverse Problems

    Get PDF
    Regularization methods are a key tool in the solution of inverse problems. They are used to introduce prior knowledge and allow a robust approximation of ill-posed (pseudo-) inverses. In the last two decades interest has shifted from linear to nonlinear regularization methods, even for linear inverse problems. The aim of this paper is to provide a reasonably comprehensive overview of this shift towards modern nonlinear regularization methods, including their analysis, applications and issues for future research. In particular we will discuss variational methods and techniques derived from them, since they have attracted much recent interest and link to other fields, such as image processing and compressed sensing. We further point to developments related to statistical inverse problems, multiscale decompositions and learning theory.Leverhulme Trust Early Career Fellowship ‘Learning from mistakes: a supervised feedback-loop for imaging applications’ Isaac Newton Trust Cantab Capital Institute for the Mathematics of Information ERC Grant EU FP 7 - ERC Consolidator Grant 615216 LifeInverse German Ministry for Science and Education (BMBF) project MED4D EPSRC grant EP/K032208/

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore