910 research outputs found

    On 1-Hamilton-connected claw-free graphs

    Get PDF
    A graph G is k-Hamilton-connected (k-hamiltonian) if G−X is Hamilton-connected (hamiltonian) for every set X ⊂ V (G) with |X| = k. In the paper, we prove that (i) every 5-connected claw-free graph with minimum degree at least 6 is 1-Hamilton-connected, (ii) every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected. As a byproduct, we also show that every 5-connected line graph with minimum degree at least 6 is 3-hamiltonian

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is Hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths. \u

    Hamilton cycles in 5-connected line graphs

    Get PDF
    A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness
    corecore