8,402 research outputs found

    Intertwining wavelets or Multiresolution analysis on graphs through random forests

    Full text link
    We propose a new method for performing multiscale analysis of functions defined on the vertices of a finite connected weighted graph. Our approach relies on a random spanning forest to downsample the set of vertices, and on approximate solutions of Markov intertwining relation to provide a subgraph structure and a filter bank leading to a wavelet basis of the set of functions. Our construction involves two parameters q and q'. The first one controls the mean number of kept vertices in the downsampling, while the second one is a tuning parameter between space localization and frequency localization. We provide an explicit reconstruction formula, bounds on the reconstruction operator norm and on the error in the intertwining relation, and a Jackson-like inequality. These bounds lead to recommend a way to choose the parameters q and q'. We illustrate the method by numerical experiments.Comment: 39 pages, 12 figure

    The Bipartite Swapping Trick on Graph Homomorphisms

    Full text link
    We provide an upper bound to the number of graph homomorphisms from GG to HH, where HH is a fixed graph with certain properties, and GG varies over all NN-vertex, dd-regular graphs. This result generalizes a recently resolved conjecture of Alon and Kahn on the number of independent sets. We build on the work of Galvin and Tetali, who studied the number of graph homomorphisms from GG to HH when HH is bipartite. We also apply our techniques to graph colorings and stable set polytopes.Comment: 22 pages. To appear in SIAM J. Discrete Mat

    Tilting theory via stable homotopy theory

    Full text link
    We show that certain tilting results for quivers are formal consequences of stability, and as such are part of a formal calculus available in any abstract stable homotopy theory. Thus these results are for example valid over arbitrary ground rings, for quasi-coherent modules on schemes, in the differential-graded context, in stable homotopy theory and also in the equivariant, motivic or parametrized variant thereof. In further work, we will continue developing this calculus and obtain additional abstract tilting results. Here, we also deduce an additional characterization of stability, based on Goodwillie's strongly (co)cartesian n-cubes. As applications we construct abstract Auslander-Reiten translations and abstract Serre functors for the trivalent source and verify the relative fractionally Calabi-Yau property. This is used to offer a new perspective on May's axioms for monoidal, triangulated categories.Comment: minor improvements in the presentation (the definition of a strong stable equivalence made more precise, references updated and added

    Dominating sets in projective planes

    Get PDF
    We describe small dominating sets of the incidence graphs of finite projective planes by establishing a stability result which shows that dominating sets are strongly related to blocking and covering sets. Our main result states that if a dominating set in a projective plane of order q>81q>81 is smaller than 2q+2[q]+22q+2[\sqrt{q}]+2 (i.e., twice the size of a Baer subplane), then it contains either all but possibly one points of a line or all but possibly one lines through a point. Furthermore, we completely characterize dominating sets of size at most 2q+q+12q+\sqrt{q}+1. In Desarguesian planes, we could rely on strong stability results on blocking sets to show that if a dominating set is sufficiently smaller than 3q, then it consists of the union of a blocking set and a covering set apart from a few points and lines.Comment: 19 page

    Random Forests and Networks Analysis

    Full text link
    D. Wilson~\cite{[Wi]} in the 1990's described a simple and efficient algorithm based on loop-erased random walks to sample uniform spanning trees and more generally weighted trees or forests spanning a given graph. This algorithm provides a powerful tool in analyzing structures on networks and along this line of thinking, in recent works~\cite{AG1,AG2,ACGM1,ACGM2} we focused on applications of spanning rooted forests on finite graphs. The resulting main conclusions are reviewed in this paper by collecting related theorems, algorithms, heuristics and numerical experiments. A first foundational part on determinantal structures and efficient sampling procedures is followed by four main applications: 1) a random-walk-based notion of well-distributed points in a graph 2) how to describe metastable dynamics in finite settings by means of Markov intertwining dualities 3) coarse graining schemes for networks and associated processes 4) wavelets-like pyramidal algorithms for graph signals.Comment: Survey pape
    • …
    corecore