908 research outputs found

    Learning-aided Stochastic Network Optimization with Imperfect State Prediction

    Full text link
    We investigate the problem of stochastic network optimization in the presence of imperfect state prediction and non-stationarity. Based on a novel distribution-accuracy curve prediction model, we develop the predictive learning-aided control (PLC) algorithm, which jointly utilizes historic and predicted network state information for decision making. PLC is an online algorithm that requires zero a-prior system statistical information, and consists of three key components, namely sequential distribution estimation and change detection, dual learning, and online queue-based control. Specifically, we show that PLC simultaneously achieves good long-term performance, short-term queue size reduction, accurate change detection, and fast algorithm convergence. In particular, for stationary networks, PLC achieves a near-optimal [O(ϵ)[O(\epsilon), O(log(1/ϵ)2)]O(\log(1/\epsilon)^2)] utility-delay tradeoff. For non-stationary networks, \plc{} obtains an [O(ϵ),O(log2(1/ϵ)[O(\epsilon), O(\log^2(1/\epsilon) +min(ϵc/21,ew/ϵ))]+ \min(\epsilon^{c/2-1}, e_w/\epsilon))] utility-backlog tradeoff for distributions that last Θ(max(ϵc,ew2)ϵ1+a)\Theta(\frac{\max(\epsilon^{-c}, e_w^{-2})}{\epsilon^{1+a}}) time, where ewe_w is the prediction accuracy and a=Θ(1)>0a=\Theta(1)>0 is a constant (the Backpressue algorithm \cite{neelynowbook} requires an O(ϵ2)O(\epsilon^{-2}) length for the same utility performance with a larger backlog). Moreover, PLC detects distribution change O(w)O(w) slots faster with high probability (ww is the prediction size) and achieves an O(min(ϵ1+c/2,ew/ϵ)+log2(1/ϵ))O(\min(\epsilon^{-1+c/2}, e_w/\epsilon)+\log^2(1/\epsilon)) convergence time. Our results demonstrate that state prediction (even imperfect) can help (i) achieve faster detection and convergence, and (ii) obtain better utility-delay tradeoffs

    Fast-Convergent Learning-aided Control in Energy Harvesting Networks

    Full text link
    In this paper, we present a novel learning-aided energy management scheme (LEM\mathtt{LEM}) for multihop energy harvesting networks. Different from prior works on this problem, our algorithm explicitly incorporates information learning into system control via a step called \emph{perturbed dual learning}. LEM\mathtt{LEM} does not require any statistical information of the system dynamics for implementation, and efficiently resolves the challenging energy outage problem. We show that LEM\mathtt{LEM} achieves the near-optimal [O(ϵ),O(log(1/ϵ)2)][O(\epsilon), O(\log(1/\epsilon)^2)] utility-delay tradeoff with an O(1/ϵ1c/2)O(1/\epsilon^{1-c/2}) energy buffers (c(0,1)c\in(0,1)). More interestingly, LEM\mathtt{LEM} possesses a \emph{convergence time} of O(1/ϵ1c/2+1/ϵc)O(1/\epsilon^{1-c/2} +1/\epsilon^c), which is much faster than the Θ(1/ϵ)\Theta(1/\epsilon) time of pure queue-based techniques or the Θ(1/ϵ2)\Theta(1/\epsilon^2) time of approaches that rely purely on learning the system statistics. This fast convergence property makes LEM\mathtt{LEM} more adaptive and efficient in resource allocation in dynamic environments. The design and analysis of LEM\mathtt{LEM} demonstrate how system control algorithms can be augmented by learning and what the benefits are. The methodology and algorithm can also be applied to similar problems, e.g., processing networks, where nodes require nonzero amount of contents to support their actions

    The Value-of-Information in Matching with Queues

    Full text link
    We consider the problem of \emph{optimal matching with queues} in dynamic systems and investigate the value-of-information. In such systems, the operators match tasks and resources stored in queues, with the objective of maximizing the system utility of the matching reward profile, minus the average matching cost. This problem appears in many practical systems and the main challenges are the no-underflow constraints, and the lack of matching-reward information and system dynamics statistics. We develop two online matching algorithms: Learning-aided Reward optimAl Matching (LRAM\mathtt{LRAM}) and Dual-LRAM\mathtt{LRAM} (DRAM\mathtt{DRAM}) to effectively resolve both challenges. Both algorithms are equipped with a learning module for estimating the matching-reward information, while DRAM\mathtt{DRAM} incorporates an additional module for learning the system dynamics. We show that both algorithms achieve an O(ϵ+δr)O(\epsilon+\delta_r) close-to-optimal utility performance for any ϵ>0\epsilon>0, while DRAM\mathtt{DRAM} achieves a faster convergence speed and a better delay compared to LRAM\mathtt{LRAM}, i.e., O(δz/ϵ+log(1/ϵ)2))O(\delta_{z}/\epsilon + \log(1/\epsilon)^2)) delay and O(δz/ϵ)O(\delta_z/\epsilon) convergence under DRAM\mathtt{DRAM} compared to O(1/ϵ)O(1/\epsilon) delay and convergence under LRAM\mathtt{LRAM} (δr\delta_r and δz\delta_z are maximum estimation errors for reward and system dynamics). Our results reveal that information of different system components can play very different roles in algorithm performance and provide a systematic way for designing joint learning-control algorithms for dynamic systems

    Algorithms for Max-Min Share Fair Allocation of Indivisible Chores

    Get PDF
    We consider Max-min Share (MmS) fair allocations of indivisible chores (items with negative utilities). We show that allocation of chores and classical allocation of goods (items with positive utilities) have some fundamental connections but also differences which prevent a straightforward application of algorithms for goods in the chores setting and viceversa. We prove that an MmS allocation does not need to exist for chores and computing an MmS allocation - if it exists - is strongly NP-hard. In view of these non-existence and complexity results, we present a polynomial-time 2-approximation algorithm for MmS fairness for chores. We then introduce a new fairness concept called optimal MmS that represents the best possible allocation in terms of MmS that is guaranteed to exist. We use connections to parallel machine scheduling to give (1) a polynomial-time approximation scheme for computing an optimal MmS allocation when the number of agents is fixed and (2) an effective and efficient heuristic with an ex-post worst-case analysis

    Leximin Approximation: From Single-Objective to Multi-Objective

    Full text link
    Leximin is a common approach to multi-objective optimization, frequently employed in fair division applications. In leximin optimization, one first aims to maximize the smallest objective value; subject to this, one maximizes the second-smallest objective; and so on. Often, even the single-objective problem of maximizing the smallest value cannot be solved accurately. What can we hope to accomplish for leximin optimization in this situation? Recently, Henzinger et al. (2022) defined a notion of \emph{approximate} leximin optimality. Their definition, however, considers only an additive approximation. In this work, we first define the notion of approximate leximin optimality, allowing both multiplicative and additive errors. We then show how to compute, in polynomial time, such an approximate leximin solution, using an oracle that finds an approximation to a single-objective problem. The approximation factors of the algorithms are closely related: an (α,ϵ)(\alpha,\epsilon)-approximation for the single-objective problem (where α(0,1]\alpha \in (0,1] and ϵ0\epsilon \geq 0 are the multiplicative and additive factors respectively) translates into an (α21α+α2,ϵ1α+α2)\left(\frac{\alpha^2}{1-\alpha + \alpha^2}, \frac{\epsilon}{1-\alpha +\alpha^2}\right)-approximation for the multi-objective leximin problem, regardless of the number of objectives. Finally, we apply our algorithm to obtain an approximate leximin solution for the problem of \emph{stochastic allocations of indivisible goods}. For this problem, assuming sub-modular objectives functions, the single-objective egalitarian welfare can be approximated, with only a multiplicative error, to an optimal 11e0.6321-\frac{1}{e}\approx 0.632 factor w.h.p. We show how to extend the approximation to leximin, over all the objective functions, to a multiplicative factor of (e1)2e2e+10.52\frac{(e-1)^2}{e^2-e+1} \approx 0.52 w.h.p or 13\frac{1}{3} deterministically

    A Bandit Approach to Online Pricing for Heterogeneous Edge Resource Allocation

    Full text link
    Edge Computing (EC) offers a superior user experience by positioning cloud resources in close proximity to end users. The challenge of allocating edge resources efficiently while maximizing profit for the EC platform remains a sophisticated problem, especially with the added complexity of the online arrival of resource requests. To address this challenge, we propose to cast the problem as a multi-armed bandit problem and develop two novel online pricing mechanisms, the Kullback-Leibler Upper Confidence Bound (KL-UCB) algorithm and the Min-Max Optimal algorithm, for heterogeneous edge resource allocation. These mechanisms operate in real-time and do not require prior knowledge of demand distribution, which can be difficult to obtain in practice. The proposed posted pricing schemes allow users to select and pay for their preferred resources, with the platform dynamically adjusting resource prices based on observed historical data. Numerical results show the advantages of the proposed mechanisms compared to several benchmark schemes derived from traditional bandit algorithms, including the Epsilon-Greedy, basic UCB, and Thompson Sampling algorithms
    corecore