4,933 research outputs found

    Decycling a graph by the removal of a matching: new algorithmic and structural aspects in some classes of graphs

    Full text link
    A graph GG is {\em matching-decyclable} if it has a matching MM such that G−MG-M is acyclic. Deciding whether GG is matching-decyclable is an NP-complete problem even if GG is 2-connected, planar, and subcubic. In this work we present results on matching-decyclability in the following classes: Hamiltonian subcubic graphs, chordal graphs, and distance-hereditary graphs. In Hamiltonian subcubic graphs we show that deciding matching-decyclability is NP-complete even if there are exactly two vertices of degree two. For chordal and distance-hereditary graphs, we present characterizations of matching-decyclability that lead to O(n)O(n)-time recognition algorithms

    A Victorian Age Proof of the Four Color Theorem

    Full text link
    In this paper we have investigated some old issues concerning four color map problem. We have given a general method for constructing counter-examples to Kempe's proof of the four color theorem and then show that all counterexamples can be rule out by re-constructing special 2-colored two paths decomposition in the form of a double-spiral chain of the maximal planar graph. In the second part of the paper we have given an algorithmic proof of the four color theorem which is based only on the coloring faces (regions) of a cubic planar maps. Our algorithmic proof has been given in three steps. The first two steps are the maximal mono-chromatic and then maximal dichromatic coloring of the faces in such a way that the resulting uncolored (white) regions of the incomplete two-colored map induce no odd-cycles so that in the (final) third step four coloring of the map has been obtained almost trivially.Comment: 27 pages, 18 figures, revised versio

    Free nilpotent and HH-type Lie algebras. Combinatorial and orthogonal designs

    Full text link
    The aim of our paper is to construct pseudo HH-type algebras from the covering free nilpotent two-step Lie algebra as the quotient algebra by an ideal. We propose an explicit algorithm of construction of such an ideal by making use of a non-degenerate scalar product. Moreover, as a bypass result, we recover the existence of a rational structure on pseudo HH-type algebras, which implies the existence of lattices on the corresponding pseudo HH-type Lie groups. Our approach substantially uses combinatorics and reveals the interplay of pseudo HH-type algebras with combinatorial and orthogonal designs. One of the key tools is the family of Hurwitz-Radon orthogonal matrices
    • …
    corecore