29 research outputs found

    Tracking and dynamic tuning of a wireless powered endoscopic capsule

    Get PDF
    This work presents an inductive wireless power transfer system for powering an endoscopy capsule supplying energy to power electronic devices allocated inside a capsule of ≈26.1 mm × 9 mm. A receiver with three coils in quadrature with dimensions of ≈9 mm × 9 mm × 10 mm is located inside the capsule, moving freely inside a transmitter coil with 380 mm diameter through translations and revolutions. The proposed system tracks the variations of the equivalent magnetic coupling coefficient compensating misalignments between the transmitter and receiver coils. The power on the load is estimated and optimized from the transmitter, and the tracking control is performed by actuating on a capacitance in the matching network and on the voltage source frequency. The proposed system can prevent load overheating by limiting the power via adjusting of the magnitude of voltage source VS. Experimental results with uncertainties analysis reveal that, even at low magnetic coupling coefficients k ranging from (1.7 × 10−3 , 3.5 × 10−3 ), the power on the load can be held within the range of 100–130 mW. These results are achieved with any position of the capsule in the space, limited by the diameter of the transmitter coil and height of 200 mm when adjusting the series capacitance of the transmitter in the range (17.4, 19.4) pF and the frequency of the power source in the range (802.1, 809.5) kHz

    A study of high-frequency-fed AC-DC converter with different DC-DC topologies

    Get PDF
    In this paper, the operation of high-frequency-fed AC-DC converters with different types of DC-DC topologies is presented. Based on the commonly used DC-DC converter topologies, the possibilities of new converter structure are investigated. Using buck and ZETA topologies as examples, the output voltage gain, output load range and switch stress of the converters are analytically studied. Both converter implementation examples will be given and experimentally demonstrated. © IEEE.published_or_final_versio

    RF energy harvesters for wireless sensors, state of the art, future prospects and challenges: a review

    Get PDF
    The power consumption of portable gadgets, implantable medical devices (IMDs) and wireless sensor nodes (WSNs) has reduced significantly with the ongoing progression in low-power electronics and the swift advancement in nano and microfabrication. Energy harvesting techniques that extract and convert ambient energy into electrical power have been favored to operate such low-power devices as an alternative to batteries. Due to the expanded availability of radio frequency (RF) energy residue in the surroundings, radio frequency energy harvesters (RFEHs) for low-power devices have garnered notable attention in recent times. This work establishes a review study of RFEHs developed for the utilization of low-power devices. From the modest single band to the complex multiband circuitry, the work reviews state of the art of required circuitry for RFEH that contains a receiving antenna, impedance matching circuit, and an AC-DC rectifier. Furthermore, the advantages and disadvantages associated with various circuit architectures are comprehensively discussed. Moreover, the reported receiving antenna, impedance matching circuit, and an AC-DC rectifier are also compared to draw conclusions towards their implementations in RFEHs for sensors and biomedical devices applications

    Estudo de um sistema de transmissão de energia sem fios para cápsula endoscópica

    Get PDF
    A transferência de energia sem fios (WPT, wireless power transfer) tem sido utilizada para alimentação de dispositivos e sistemas, em que o uso de cabos é inadequado, custoso ou até mesmo proibitivo. As suas aplicações abrangem desde dispositivos biomédicos implantáveis, passando pelo setor de eletrônicos de consumo, até recarga de baterias em veículos elétricos. A potência transferida à carga por meio do WPT depende dos parâmetros do circuito equivalente do link indutivo. Mesmo com esses parâmetros fixos, a potência entregue à carga é influenciada por desalinhamentos entre as bobinas transmissora e receptora, bem como condições de carga variável. Esse trabalho apresenta a análise matemática, modelagem e proposta de um método de projeto de um sistema de transmissão de energia sem-fios aplicado ao problema de uma cápsula endoscópica. Esse problema é bastante particular por apresentar um receptor com três bobinas em quadratura. Além disso a bobina transmissora apresenta um diâmetro de aproximadamente 30 vezes o diâmetro das bobinas receptoras. O sistema é projetado para otimizar a potência transmitida para uma cápsula engolível com posição e orientação arbitrárias ao longo de uma distância equivalente ao trato digestivo. Os resultados mostraram que é possível garantir uma potência mínima na carga de 100 mW em todo o trajeto da cápsula, suficiente para coletar e transmitir imagens do interior do trato digestivo até um receptor externo.Wireless power transfer (WPT) has been used to power devices and systems, in which the use of cables is distorted, costly or even prohibitive. Its applications range from implantable biomedical devices, through the consumer electronics sector, to battery recharging in electric vehicles. The power transferred to the load through the WPT depends on the parameters of the equivalent circuit of the inductive link. Even with these fixed parameters, the power delivered to the load is influenced by misalignments between the transmitting and receiving coils, as well as the variable load conditions. This work presents a mathematical analysis, modeling and proposal of a design method for a wireless energy transmission system converted to the problem of an endoscopic capsule. This problem is very particular because it has a receiver with three quadrature coils. In addition, a transmitting coil presents diameter of approximate 30 times the diameter of the receiving coils. The system is designed to optimize the power transmitted to a swallowable capsule with arbitrary position and orientation over a distance equivalent to the digestive tract. The possible results are that it is possible to guarantee a minimum load power of 100 mW throughout the capsule path, sufficient to collect and transmit images from the inside of the digestive tract to an external receptor

    Self-folding 3D micro antennas for implantable medical devices

    Get PDF
    Tese de Doutoramento em Engenharia Biomédica.Recent advances in device miniaturization have been enabling smart and small implantable medical devices. These are often powered by bulky batteries whose dimensions represent one of the major bottlenecks on further device miniaturization. However, alternative powering methods, such as electromagnetic waves, do not rely on stored energy and are capable of providing high energy densities per unit of area, thus increasing the potential for device miniaturization. Hence, we envision an implanted medical device with an integrated miniaturized antenna, capable of receiving a radiofrequency signal from an exterior source, and converting it to a DC signal, thus enabling remote powering. This thesis addresses the analysis, design, fabrication and characterization of novel 3D micro antennas that can be integrated on 500 × 500 × 500 μm3 cubic devices, and used for wireless power transfer purposes. The analysis is built upon the theory of electrically small antennas in lossy media, and the antenna design takes into consideration miniaturization techniques which are compatible with the antenna fabrication process. For the antenna fabrication, a methodology that combines conventional planar photolithography techniques and self-folding was used. While photolithography allows the easy patterning of virtually every desired planar antenna configuration with reproducible feature precision, and the flexibility to easily and precisely change the antenna geometry and size, self-folding allows assembly of the fabricated planar patterns into a 3D structure in a highly parallel and scalable manner. After fabrication, we characterized the fabricated antennas by measuring their S-parameters and radiation patterns, demonstrating their efficacy at 2 GHz when immersed in dispersive media such as water. This step required the development and test of multiple characterization setups based on connectors, RF probes and transmission lines and the use of an anechoic chamber. Moreover, we successfully show that the antennas can wireless transfer energy to power an LED, highlighting a proof of concept for practical applications. Our findings suggest that self-folding micro antennas could provide a viable solution for powering tiny micro devices.Os recentes avanços das tecnologias de miniaturização têm permitido o desenvolvimento de dispositivos médicos implantáveis inteligentes e mais pequenos. Estes são muitas vezes alimentados por baterias volumosas cujas dimensões limitam o nível de miniaturização alcançável por um micro dispositivo. No entanto, existem formas alternativas de alimentar estes dispositivos que não dependem de energia armazenada, tais como ondas eletromagnéticas, que são capazes de providenciar uma elevada densidade de energia por unidade de área, aumentando assim o potencial de miniaturização dos dispositivos. Desta forma, visionamos um dispositivo médico implantado, com uma antena miniaturizada e integrada, capaz de receber um sinal de rádio frequência a partir de uma fonte externa, e convertê-lo num sinal DC, permitindo assim a alimentação remota do aparelho. Esta tese apresenta a análise, desenho, fabrico e caracterização de micro antenas 3D, passíveis de serem integradas em micro dispositivos cúbicos (500 × 500 × 500 μm3), e utilizadas para fins de transferência de energia sem fios. A análise assenta na teoria das antenas eletricamente pequenas em meios com perdas, e o design da antena considera técnicas de miniaturização de antenas. Para o fabrico da antena foi utilizada uma metodologia que combina técnicas de fotolitografia planar e auto-dodragem (self-folding). Enquanto a fotolitografia permite a padronização de virtualmente todos os tipos de configurações planares de forma precisa, reprodutível, e com a flexibilidade para se mudar rapidamente a geometria e o tamanho da antena, o self-folding permite a assemblagem dos painéis planares fabricados numa estrutura 3D. Depois do fabrico, as antenas foram caracterizadas medindo os seus parâmetros S e diagramas de radiação, demonstrando a sua eficácia a 2 GHz quando imersas num meio dispersivo, tal como água. Esta etapa exigiu o desenvolvimento e teste de várias setups de caracterização com base em conectores, sondas de RF e linhas de transmissão, e ainda o uso de uma câmara anecóica. Além disso, mostramos com sucesso que as micro antenas podem receber e transferir o energia para um LED acendendo-o, destacando assim esta prova de conceito para aplicações práticas. Os nossos resultados sugerem que estas micro antenas auto-dobráveis podem fornecer uma solução viável para alimentar micro dispositivos implantáveis muito pequenos.Fundação para a Ciência e a Tecnologia (FCT) bolsa SFRH/BD/63737/2009

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Multi-frequency microwave energy harvesting receivers: theory and applications

    Get PDF
    Mención Internacional en el título de doctorEmissions across the electromagnetic spectrum are not only used for communications, but they can also be used for powering electronic devices. This resource has been made more and more abundant in the last years thanks to the recent deployment of 4G and 5G, and the popularization of broadband wireless networks such as WiFi, including traditional services such as TV and radio broadcasting. In order to take advantage of the energy (currently wasted), rectennas (a rectifier integrated with an antenna) are used. This thesis has the objective of studying these rectifying elements, to reduce or eliminate the use of batteries that are employed in millions of low-power devices and sensor networks planned for deployment in the near future. To do this, a self-supply system in situ is required. This could be achieved with photovoltaics or piezoelectrics, but they require the presence of light or vibration. However, the electromagnetic energy produced by mobile communications, TV base stations and radar is noticeable inside a large coverage area, 24 hours a day. This includes difficult access areas where it is nearly impossible to provide appropriate maintenance to replace batteries. As explained through the thesis, energy harvesting applications have a severe limitation on the available levels of power density to scavenge, constraining the RF-DC power conversion effciencies. Therefore, the amount of DC power to feed a sensor is limited and some techniques must be applied to improve the performance. This thesis proposes an alternative for improving the RF-DC power conversion efficiency based on the multiple-tone scenario (the electromagnetic spectrum). Previous studies have been published about an empirical improvement in the power efficiency when working with high Peak to Average Power Ratio (PAPR) multiple-tone signals, compared to a CW signal with the same average power, although the theoretical proof was not accurate enough. A mathematical model that predicts the expected DC current of the diode when excited with multiple tones is proposed along the thesis, having good agreement with simulations and measurements, demonstrating the good performance of the theoretical model. With this mathematical approach, convergence problems in simulation software can be avoided. This document comprises six chapters and it is organized as follows: In the first chapter a brief introduction on the evolution of wireless power transfer is presented, including all the different approaches that compose it, emphasizing the far-filed non-directional powering or harvesting, which is the topic of this thesis. In addition, an analysis of the state of the art is presented with the most signifficant values of conversion effciency, as well as the main characteristics of various designs. In the second chapter, the performance of the diode is explored theoretically. For very low incident power densities (those present in the environment), the diode works in a non-linear region, where a power effciency improvement is obtained when using high PAPR multiple-tone signal instead of a single tone with the same average power. This fact has been empirically tested but an accurate theoretical model has not been accomplished. Therefore, this chapter deals with this issue, showing a novel mathematical analysis of the diode operation in that region for multiple input tones, varying their relative amplitude and frequency. In Chapter 3, the theoretical analysis is compared with simulations and experiments for multiple input tones with a large resulting PAPR using three different rectifier circuits. To properly compare the results, it is necessary to use an accurate Spice diode model (including parasitics) and an appropriate measurement setup. Otherwise, results will differ due to an inadequate characterization of the non-linear device. This chapter addresses those issues. The analysis shows that the relative frequency and amplitude of multiple simultaneous signals impacts the amount of efficiency improvement. Once the recti er element is studied, Chapter 4 deals with the antenna design, which is part of the rectenna deployment. It is seen that different design criteria must be used when working with a WPT directive beaming application or a non-directive harvesting one, as happens in this thesis. The integration between the antenna and the recti er is analyzed, showing possible alternatives. Finally, a rectenna design is built and tested through indoor and outdoor measurements. An analysis of the electromagnetic spectrum is included to demonstrate the feasibility of the rectenna model. In Chapter 5 a wearable rectenna application is shown, with a broadband 2 to 5 GHz rectenna array, implemented on a cotton shirt. This application allows to collect enough energy to power energy-efficient devices. Different rectenna array sizes were tested at different power densities. The single element is a self-complementary tightly-coupled bow-tie. Simulations and measurements were performed over a phantom and over body tissues taking into account the electrical properties of the torso. The thickness of each layer was varied analyzing its influence in the antenna performance, to check what happens under different body compositions (people with more adipose tissue or on the contrary more brous). Finally, Chapter 6 collects the conclusions of the work shown in this thesis and ideas for future work. Some ideas are proposed about Chapter 2 to reduce the error of the mathematical approach when working in the non-linear region. Also, some possible improvements to the printed antenna of Chapter 5 are included such as adding a dual linear polarization.Las emisiones a lo largo de todo el espectro electromagnético no sólo se pueden utilizar para las comunicaciones, sino que también pueden emplearse para la alimentación de dispositivos electr onicos. Este recurso se ha hecho cada vez más abundante en los ultimos años gracias a los recientes despliegues en telefonía móvil de 4G y 5G y a la popularización de las redes inalámbricas de banda ancha (WiFi), sin olvidar las comunicaciones de difusión ya existentes como la radio o televisión. Para poder aprovechar este recurso (actualmente desaprovechado), se utilizan las llamadas rectenas, que son antenas con un elemento rectificador integrado. Esta tesis tiene por objetivo el estudio de estos elementos rectificadores, para desarrollar aplicaciones capaces de reducir o eliminar el uso de baterías en los millones de dispositivos y redes de sensores de bajo consumo existentes hoy día, mediante el autoabastecimiento de energía. Este proceso podría llevarse a cabo con paneles fotovoltaicos o sistemas piezoeléctricos, pero estos requieren de la presencia continua de la fuente que los origina (vibraciones, horas de sol). Sin embargo, la energía electromagnética producida por las estaciones base, de telefonía o televisión, está presente bajo su zona de cobertura las 24 horas del día, lo cual incluye zonas de difícil acceso, en las que es complicado el recambio o mantenimiento de las baterías. Además, estas emisiones tienen como principal limitación la baja densidad de potencia, obteniéndose valores de eficiencia de conversión RF-DC muy bajos. Esto conlleva que los valores de corriente DC para alimentar al sensor sean muy pequeños, de nA o uA, y por tanto, deben emplearse técnicas para la mejora del rendimiento. Esta tesis propone una alternativa para mejorar la eficiencia de conversión, basada en la probada mejora de eficiencia cuando se trabaja con señales con un Peak to Average Power Ratio (PAPR) grande. Esto se da en escenarios multitonales como puede ser el espectro electromagnético. Esta mejora no ha sido abordada teóricamente con resultados precisos en trabajos previos, por lo que en esta tesis se desarrolla un modelo matemático que predice la componente DC de la corriente del diodo, cuando se excita con múltiples tonos. Los resultados obtenidos han sido validados en el laboratorio, demostrándose la mejora en la eficiencia de conversión y el buen comportamiento del modelo teórico. De esta forma, se pueden agilizar los cálculos cuando no se tiene un software de simulación disponible, o cuando este arroja problemas de convergencia. Esta tesis consta de seis capítulos y está organizada de la siguiente manera: En el primer capítulo se expone una breve introducción sobre la evolución de la transferencia inalámbrica de potencia y sobre las diferentes tecnologías que la componen, haciéndose hincapié en la transferencia de potencia no directiva en campo lejano, puesto que se corresponde a la recolección de la energía electromagnética ambiental. Además, se incluye un análisis del estado del arte con los valores más significativos de eficiencia de conversión, así como las principales características de varios diseños (como por ejemplo la potencia o las bandas de trabajo empleadas). En el segundo capítulo se explora el comportamiento del diodo desde el punto de vista matemático. Bajo densidades de potencia pequeñas, como las presentes en este entorno, el diodo opera en su región no lineal, produciendo un incremento de eficiencia cuando se trabaja con señales con gran PAPR, respecto a un tono con la misma potencia media. Este hecho ha sido probado empíricamente pero ningún modelo teórico preciso ha sido realizado. En este capítulo se incluye un novedoso análisis matemático del funcionamiento del diodo en esa región para múltiples tonos de entrada, variando la amplitud y frecuencia de estos. En el capítulo 3 se muestra la comparativa entre el modelo teórico, las simulaciones y las medidas en el laboratorio, usando múltiples tonos entrada en tres rectificadores. Para comparar adecuadamente todos los resultados, es necesario utilizar un modelo Spice del diodo preciso (incluyendo los parásitos del encapsulado) y un correcto setup de medida. De lo contrario, existiría un error en los resultados debido a una caracterización inadecuada del dispositivo no lineal. Este capítulo aborda esos problemas. El análisis muestra que la frecuencia y amplitud relativa de múltiples señales simultáneas afectan a la eficiencia. Una vez estudiado el rectificador, el capítulo 4 de la tesis aborda el diseño de la antena. Para ello, se analizan los diferentes criterios de diseño que deben emplearse cuando se trabaja con una transmisión de potencia inalámbrica directiva o no directiva, como es en caso bajo estudio, así como las técnicas de integración entre rectificador y antena. Para concluir, se diseña y mide una rectena tanto en laboratorio como en espacio abierto, usando la energía ambiental, previamente caracterizada con medidas espectrales. Los resultados demuestran que es posible recolectar y rectificar la energía ambiental. En el capítulo 5 se muestra una posible aplicación al integrarse una rectena impresa en una camiseta para alimentar sensores biológicos o \wearable". Se trata de un diseño de banda ancha que opera en el rango de 2 a 5 GHz, que permite recolectar suficiente energía para alimentar sensores de bajo consumo. Se analiza el funcionamiento de dos tamaños distintos de arrays con diferentes densidades de potencia. Al ser un diseño \wearable", la aplicación ha sido diseñada y probada sobre un maniquí y un cuerpo humano, analizándose el comportamiento de la antena impresa sobre distintas composiciones corporales (personas con más tejido adiposo o por el contrario más fibrosas). Finalmente, el capítulo 6 recopila las conclusiones del trabajo que se muestra en esta tesis e ideas para trabajos futuros, proponiéndose desde enfoques para reducir más el error en la aproximación del comportamiento no lineal del diodo en el capítulo 2, a posibles mejoras en la antena impresa del capítulo 5, incluyendo la doble polarización lineal.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Carlos Martín Pascual.- Secretario: Simon Jacques Hemour.- Vocal: Nuno Miguel G. Borges De Carvalh

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    corecore