708 research outputs found

    A history and theory of textual event detection and recognition

    Get PDF

    Reconnaissance de l'écriture manuscrite en-ligne par approche combinant systèmes à vastes marges et modèles de Markov cachés

    Get PDF
    Handwriting recognition is one of the leading applications of pattern recognition and machine learning. Despite having some limitations, handwriting recognition systems have been used as an input method of many electronic devices and helps in the automation of many manual tasks requiring processing of handwriting images. In general, a handwriting recognition system comprises three functional components; preprocessing, recognition and post-processing. There have been improvements made within each component in the system. However, to further open the avenues of expanding its applications, specific improvements need to be made in the recognition capability of the system. Hidden Markov Model (HMM) has been the dominant methods of recognition in handwriting recognition in offline and online systems. However, the use of Gaussian observation densities in HMM and representational model for word modeling often does not lead to good classification. Hybrid of Neural Network (NN) and HMM later improves word recognition by taking advantage of NN discriminative property and HMM representational capability. However, the use of NN does not optimize recognition capability as the use of Empirical Risk minimization (ERM) principle in its training leads to poor generalization. In this thesis, we focus on improving the recognition capability of a cursive online handwritten word recognition system by using an emerging method in machine learning, the support vector machine (SVM). We first evaluated SVM in isolated character recognition environment using IRONOFF and UNIPEN character databases. SVM, by its use of principle of structural risk minimization (SRM) have allowed simultaneous optimization of representational and discriminative capability of the character recognizer. We finally demonstrate the various practical issues in using SVM within a hybrid setting with HMM. In addition, we tested the hybrid system on the IRONOFF word database and obtained favourable results.Nos travaux concernent la reconnaissance de l'écriture manuscrite qui est l'un des domaines de prédilection pour la reconnaissance des formes et les algorithmes d'apprentissage. Dans le domaine de l'écriture en-ligne, les applications concernent tous les dispositifs de saisie permettant à un usager de communiquer de façon transparente avec les systèmes d'information. Dans ce cadre, nos travaux apportent une contribution pour proposer une nouvelle architecture de reconnaissance de mots manuscrits sans contrainte de style. Celle-ci se situe dans la famille des approches hybrides locale/globale où le paradigme de la segmentation/reconnaissance va se trouver résolu par la complémentarité d'un système de reconnaissance de type discriminant agissant au niveau caractère et d'un système par approche modèle pour superviser le niveau global. Nos choix se sont portés sur des Séparateurs à Vastes Marges (SVM) pour le classifieur de caractères et sur des algorithmes de programmation dynamique, issus d'une modélisation par Modèles de Markov Cachés (HMM). Cette combinaison SVM/HMM est unique dans le domaine de la reconnaissance de l'écriture manuscrite. Des expérimentations ont été menées, d'abord dans un cadre de reconnaissance de caractères isolés puis sur la base IRONOFF de mots cursifs. Elles ont montré la supériorité des approches SVM par rapport aux solutions à bases de réseaux de neurones à convolutions (Time Delay Neural Network) que nous avions développées précédemment, et leur bon comportement en situation de reconnaissance de mots

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Improvement of Speech Perception for Hearing-Impaired Listeners

    Get PDF
    Hearing impairment is becoming a prevalent health problem affecting 5% of world adult populations. Hearing aids and cochlear implant already play an essential role in helping patients over decades, but there are still several open problems that prevent them from providing the maximum benefits. Financial and discomfort reasons lead to only one of four patients choose to use hearing aids; Cochlear implant users always have trouble in understanding speech in a noisy environment. In this dissertation, we addressed the hearing aids limitations by proposing a new hearing aid signal processing system named Open-source Self-fitting Hearing Aids System (OS SF hearing aids). The proposed hearing aids system adopted the state-of-art digital signal processing technologies, combined with accurate hearing assessment and machine learning based self-fitting algorithm to further improve the speech perception and comfort for hearing aids users. Informal testing with hearing-impaired listeners showed that the testing results from the proposed system had less than 10 dB (by average) difference when compared with those results obtained from clinical audiometer. In addition, Sixteen-channel filter banks with adaptive differential microphone array provides up to six-dB SNR improvement in the noisy environment. Machine-learning based self-fitting algorithm provides more suitable hearing aids settings. To maximize cochlear implant users’ speech understanding in noise, the sequential (S) and parallel (P) coding strategies were proposed by integrating high-rate desynchronized pulse trains (DPT) in the continuous interleaved sampling (CIS) strategy. Ten participants with severe hearing loss participated in the two rounds cochlear implants testing. The testing results showed CIS-DPT-S strategy significantly improved (11%) the speech perception in background noise, while the CIS-DPT-P strategy had a significant improvement in both quiet (7%) and noisy (9%) environment

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Advanced Technique and Future Perspective for Next Generation Optical Fiber Communications

    Get PDF
    Optical fiber communication industry has gained unprecedented opportunities and achieved rapid progress in recent years. However, with the increase of data transmission volume and the enhancement of transmission demand, the optical communication field still needs to be upgraded to better meet the challenges in the future development. Artificial intelligence technology in optical communication and optical network is still in its infancy, but the existing achievements show great application potential. In the future, with the further development of artificial intelligence technology, AI algorithms combining channel characteristics and physical properties will shine in optical communication. This reprint introduces some recent advances in optical fiber communication and optical network, and provides alternative directions for the development of the next generation optical fiber communication technology
    • …
    corecore