706 research outputs found

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Non-local kinetic and macroscopic models for self-organised animal aggregations

    Get PDF
    The last two decades have seen a surge in kinetic and macroscopic models derived to investigate the multi-scale aspects of self-organised biological aggregations. Because the individual-level details incorporated into the kinetic models (e.g., individual speeds and turning rates) make them somewhat difficult to investigate, one is interested in transforming these models into simpler macroscopic models, by using various scaling techniques that are imposed by the biological assumptions of the models. However, not many studies investigate how the dynamics of the initial models are preserved via these scalings. Here, we consider two scaling approaches (parabolic and grazing collision limits) that can be used to reduce a class of non-local 1D and 2D models for biological aggregations to simpler models existent in the literature. Then, we investigate how some of the spatio-temporal patterns exhibited by the original kinetic models are preserved via these scalings. To this end, we focus on the parabolic scaling for non-local 1D models and apply asymptotic preserving numerical methods, which allow us to analyse changes in the patterns as the scaling coefficient ϵ is varied from ϵ=1 (for 1D transport models) to ϵ=0 (for 1D parabolic models). We show that some patterns (describing stationary aggregations) are preserved in the limit ϵ→0, while other patterns (describing moving aggregations) are lost. To understand the loss of these patterns, we construct bifurcation diagrams

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    The smart house for older persons and persons with physical disabilities: structure, technology arrangements, and perspectives

    Full text link

    Development and evaluation of a haptic framework supporting telerehabilitation robotics and group interaction

    Get PDF
    Telerehabilitation robotics has grown remarkably in the past few years. It can provide intensive training to people with special needs remotely while facilitating therapists to observe the whole process. Telerehabilitation robotics is a promising solution supporting routine care which can help to transform face-to-face and one-on-one treatment sessions that require not only intensive human resource but are also restricted to some specialised care centres to treatments that are technology-based (less human involvement) and easy to access remotely from anywhere. However, there are some limitations such as network latency, jitter, and delay of the internet that can affect negatively user experience and quality of the treatment session. Moreover, the lack of social interaction since all treatments are performed over the internet can reduce motivation of the patients. As a result, these limitations are making it very difficult to deliver an efficient recovery plan. This thesis developed and evaluated a new framework designed to facilitate telerehabilitation robotics. The framework integrates multiple cutting-edge technologies to generate playful activities that involve group interaction with binaural audio, visual, and haptic feedback with robot interaction in a variety of environments. The research questions asked were: 1) Can activity mediated by technology motivate and influence the behaviour of users, so that they engage in the activity and sustain a good level of motivation? 2) Will working as a group enhance users’ motivation and interaction? 3) Can we transfer real life activity involving group interaction to virtual domain and deliver it reliably via the internet? There were three goals in this work: first was to compare people’s behaviours and motivations while doing the task in a group and on their own; second was to determine whether group interaction in virtual and reala environments was different from each other in terms of performance, engagement and strategy to complete the task; finally was to test out the effectiveness of the framework based on the benchmarks generated from socially assistive robotics literature. Three studies have been conducted to achieve the first goal, two with healthy participants and one with seven autistic children. The first study observed how people react in a challenging group task while the other two studies compared group and individual interactions. The results obtained from these studies showed that the group interactions were more enjoyable than individual interactions and most likely had more positive effects in terms of user behaviours. This suggests that the group interaction approach has the potential to motivate individuals to make more movements and be more active and could be applied in the future for more serious therapy. Another study has been conducted to measure group interaction’s performance in virtual and real environments and pointed out which aspect influences users’ strategy for dealing with the task. The results from this study helped to form a better understanding to predict a user’s behaviour in a collaborative task. A simulation has been run to compare the results generated from the predictor and the real data. It has shown that, with an appropriate training method, the predictor can perform very well. This thesis has demonstrated the feasibility of group interaction via the internet using robotic technology which could be beneficial for people who require social interaction (e.g. stroke patients and autistic children) in their treatments without regular visits to the clinical centres
    • …
    corecore