661 research outputs found

    Unsupervised multi-scale change detection from SAR imagery for monitoring natural and anthropogenic disasters

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscaledriven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6

    Offshore oil spill detection using synthetic aperture radar

    Get PDF
    Among the different types of marine pollution, oil spill has been considered as a major threat to the sea ecosystems. The source of the oil pollution can be located on the mainland or directly at sea. The sources of oil pollution at sea are discharges coming from ships, offshore platforms or natural seepage from sea bed. Oil pollution from sea-based sources can be accidental or deliberate. Different sensors to detect and monitor oil spills could be onboard vessels, aircraft, or satellites. Vessels equipped with specialised radars, can detect oil at sea but they can cover a very limited area. One of the established ways to monitor sea-based oil pollution is the use of satellites equipped with Synthetic Aperture Radar (SAR).The aim of the work presented in this thesis is to identify optimum set of feature extracted parameters and implement methods at various stages for oil spill detection from Synthetic Aperture Radar (SAR) imagery. More than 200 images of ERS-2, ENVSAT and RADARSAT 2 SAR sensor have been used to assess proposed feature vector for oil spill detection methodology, which involves three stages: segmentation for dark spot detection, feature extraction and classification of feature vector. Unfortunately oil spill is not only the phenomenon that can create a dark spot in SAR imagery. There are several others meteorological and oceanographic and wind induced phenomena which may lead to a dark spot in SAR imagery. Therefore, these dark objects also appear similar to the dark spot due to oil spill and are called as look-alikes. These look-alikes thus cause difficulty in detecting oil spill spots as their primary characteristic similar to oil spill spots. To get over this difficulty, feature extraction becomes important; a stage which may involve selection of appropriate feature extraction parameters. The main objective of this dissertation is to identify the optimum feature vector in order to segregate oil spill and ‘look-alike’ spots. A total of 44 Feature extracted parameters have been studied. For segmentation, four methods; based on edge detection, adaptive theresholding, artificial neural network (ANN) segmentation and the other on contrast split segmentation have been implemented. Spot features are extracted from both the dark spots themselves and their surroundings. Classification stage was performed using two different classification techniques, first one is based on ANN and the other based on a two-stage processing that combines classification tree analysis and fuzzy logic. A modified feature vector, including both new and improved features, is suggested for better description of different types of dark spots. An ANN classifier using full spectrum of feature parameters has also been developed and evaluated. The implemented methodology appears promising in detecting dark spots and discriminating oil spills from look-alikes and processing time is well below any operational service requirements

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Offshore oil seepage visible from space : a Synthetic Aperture Radar (SAR) based automatic detection, mapping and quantification system

    Get PDF
    Offshore oil seepage is believed to be the largest source of marine oil, yet very few of their locations and seepage fluxes have been discovered and reported. Natural oil seep sites are important as they serve as potential energy sources and because they are hosts to a very varied marine ecosystem. These seeps can also be associated with gas hydrates and methane emissions and hence, locating natural oil seeps can provide locations where the sources of greenhouse gases could be studied and quantified. A quantification of the amount of crude oil released from natural oil seeps is important as it can be used to set a background against which the excess anthropogenic sources of marine oil can be checked. This will provide an estimate of the 'contamination' of marine waters from anthropogenic sources. Until the onset of remote sensing techniques, field measurements and techniques like hydroacoustic measurements or piston core analysis were used to obtain knowledge about the geological settings of the seeps. The remote sensing techniques either involved manual or semi-automatic image analysis. An automatic algorithm that could quantitatively and qualitatively estimate the locations of oil seeps around the world would reduce the time and costs involved by a considerable margin. Synthetic Aperture Radar (SAR) sensors provide an illumination and weather independent source of ocean images that can be used to detect offshore oil seeps. Oil slicks on the ocean surface dampen the small wind driven waves present on the ocean surface and appear darker against the brighter ocean surface. They can, hence, be detected in SAR image. With the launch of the latest Sentinel-1 satellite aimed at providing free SAR data, an algorithm that detects oil slicks and estimates seep location is very beneficial. The global data coverage and the reduction of processing times for the large amounts of SAR data would be unmatchable. The aim of this thesis was to create such an algorithm that could automatically detect oil slicks in SAR images, map the location of the estimated oil seeps and quantify their seepage fluxes. The thesis consists of three studies that are compiled into one of more manuscripts that are published, accepted for publication or ready for submission. The first study of this thesis involves the creation of the Automatic Seep Location Estimator (ASLE) which detects oil slicks in marine SAR images and estimates offshore oil seepage sites. This, the first fully automatic oil seep location estimation algorithm, has been implemented in the programming language Python and has been tested and validated on ENVISAT images of the Black Sea. The second study reported in this thesis focuses on the optimisation of the created ASLE and comparison of the ASLE with other existing algorithms. It also describes the efficiency of the ASLE with respect to other existing algorithms and the results show that the ASLE can successfully detect seeps of active seepages. The third study aimed to provide the status of the offshore seepage in the southern Gulf of Mexico estimated from the ASLE using SAR images from ENVISAT and RADARSAT-1. The ASLE was used to detect natural oil slicks from SAR images and estimate the locations of feeding seeps. The estimated seep locations and the slicks contributing to these estimations were then analysed to quantify their seepage fluxes and rates. The three case studies illustrate that an automatic offshore seepage detection and estimation system such as the Automatic Seep Location Estimator (ASLE) is very beneficial in order to locate global oil seeps and estimate global seepage fluxes. It provides a technique to detect offshore seeps and their seepage fluxes in a fast and highly efficient manner by using Synthetic Aperture Radar images. This allows global accessibility of offshore oil seepage sites. The availability of large amounts of historic SAR datasets, the presence of 5 active SAR satellites and the latest launch of the European Space Agency satellite Sentinel-1, which provides free data, shows that there is no shortage in the availability of SAR data. The result of the work done in this thesis provides a means to utilise this large SAR dataset for the purpose of offshore oil seepage detection and offshore seepage related geophysical applications. The created system will be an important tool in the future not just to estimate offshore seepage in local seas but in global oceans that are otherwise challenging for field analysis

    Observing Marine Pollution with Synthetic Aperture Radar

    Get PDF
    Non

    The Costa Concordia last cruise: The first application of high frequency monitoring based on COSMO-SkyMed constellation for wreck removal

    Get PDF
    AbstractThe Italian vessel Costa Concordia wrecked on January 13th 2012 offshore the Giglio Island (Tuscany, Italy), with the loss of 32 lives. Salvage operation of the vessel started immediately after the wreck. This operation was the largest and most expensive maritime salvage ever attempted on a wrecked ship and it ended in July 2014 when the Costa Concordia was removed from the Giglio Island, and dragged in the port of Genoa where it was dismantled. The refloating and removal phases of the Costa Concordia were monitored, in the period between 14th and 27th of July, exploiting SAR (Synthetic Aperture Radar) images acquired by the X-band COSMO-SkyMed satellite constellation in crisis mode. The main targets of the monitoring system were: (i) the detection of possible spill of pollutant material from the vessel and (ii) to exclude that oil slicks, illegally produced by other vessels, could be improperly linked to the naval convoy during its transit along the route between the Giglio Island and the port of Genoa. Results point out that the adopted monitoring system, through the use of the COSMO-SkyMed constellation, can be profitably employed to monitor emergency phases related to single ship or naval convoy over wide areas and with a suitable temporal coverage. Furthermore, the refloating and removal phases of the Costa Concordia were a success because no pollution was produced during the operations

    Hyperspectral Remote Sensing Benchmark Database for Oil Spill Detection with an Isolation Forest-Guided Unsupervised Detector

    Full text link
    Oil spill detection has attracted increasing attention in recent years since marine oil spill accidents severely affect environments, natural resources, and the lives of coastal inhabitants. Hyperspectral remote sensing images provide rich spectral information which is beneficial for the monitoring of oil spills in complex ocean scenarios. However, most of the existing approaches are based on supervised and semi-supervised frameworks to detect oil spills from hyperspectral images (HSIs), which require a huge amount of effort to annotate a certain number of high-quality training sets. In this study, we make the first attempt to develop an unsupervised oil spill detection method based on isolation forest for HSIs. First, considering that the noise level varies among different bands, a noise variance estimation method is exploited to evaluate the noise level of different bands, and the bands corrupted by severe noise are removed. Second, kernel principal component analysis (KPCA) is employed to reduce the high dimensionality of the HSIs. Then, the probability of each pixel belonging to one of the classes of seawater and oil spills is estimated with the isolation forest, and a set of pseudo-labeled training samples is automatically produced using the clustering algorithm on the detected probability. Finally, an initial detection map can be obtained by performing the support vector machine (SVM) on the dimension-reduced data, and then, the initial detection result is further optimized with the extended random walker (ERW) model so as to improve the detection accuracy of oil spills. Experiments on airborne hyperspectral oil spill data (HOSD) created by ourselves demonstrate that the proposed method obtains superior detection performance with respect to other state-of-the-art detection approaches

    Oil-Spill Pollution Remote Sensing by Synthetic Aperture Radar

    Get PDF
    • …
    corecore