2,738 research outputs found

    Oil Spill Detection using Segmentation based Approaches

    Get PDF
    This paper presents a description and comparison of two segmentation methods for the oil spill detection in the sea surface. SLAR sensors acquire video sequences from which snapshots are extracted for the detection of oil spills. Both approaches are segmentation based on graph techniques and J-image respectively. Finally, the aim of applying both approaches to SLAR snapshots, as shown, is to detect the largest part of the oil slick and minimize the false detection of the spill.This work was funded by Ministry of Economy and Competitiveness and supported by Spanish project (RTC-2014-1863-8)

    Investigating SAR algorithm for spaceborne interferometric oil spill detection

    Get PDF
    The environmental damages and recovery of terrestrial ecosystems from oil spills can last decades. Oil spills have been responsible for loss of aquamarine lives, organisms, trees, vegetation, birds and wildlife. Although there are several methods through which oil spills can be detected, it can be argued that remote sensing via the use of spaceborne platforms provides enormous benefits. This paper will provide more efficient means and methods that can assist in improving oil spill responses. The objective of this research is to develop a signal processing algorithm that can be used for detecting oil spills using spaceborne SAR interferometry (InSAR) data. To this end, a pendulum formation of multistatic smallSAR carrying platforms in a near equatorial orbit is described. The characteristic parameters such as the effects of incidence angles on radar backscatter, which support the detection of oil spills, will be the main drivers for determining the relative positions of the small satellites in formation. The orbit design and baseline distances between each spaceborne SAR platform will also be discussed. Furthermore, results from previous analysis on coverage assessment and revisit time shall be highlighted. Finally, an evaluation of automatic algorithm techniques for oil spill detection in SAR images will be conducted and results presented. The framework for the automatic algorithm considered consists of three major steps. The segmentation stage, where techniques that suggest the use of thresholding for dark spot segmentation within the captured InSAR image scene is conducted. The feature extraction stage involves the geometry and shape of the segmented region where elongation of the oil slick is considered an important feature and a function of the width and the length of the oil slick. For the classification stage, where the major objective is to distinguish oil spills from look-alikes, a Mahalanobis classifier will be used to estimate the probability of the extracted features being oil spills. The validation process of the algorithm will be conducted by using NASA’s UAVSAR data obtained over the Gulf of coast oil spill and RADARSAT-1 dat

    Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation

    Get PDF
    This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images.This work was supported by the Spanish Ministry of Economy and Competitiveness through the ONTIME research project (RTC-2014-1863-8)

    Offshore oil spill detection using synthetic aperture radar

    Get PDF
    Among the different types of marine pollution, oil spill has been considered as a major threat to the sea ecosystems. The source of the oil pollution can be located on the mainland or directly at sea. The sources of oil pollution at sea are discharges coming from ships, offshore platforms or natural seepage from sea bed. Oil pollution from sea-based sources can be accidental or deliberate. Different sensors to detect and monitor oil spills could be onboard vessels, aircraft, or satellites. Vessels equipped with specialised radars, can detect oil at sea but they can cover a very limited area. One of the established ways to monitor sea-based oil pollution is the use of satellites equipped with Synthetic Aperture Radar (SAR).The aim of the work presented in this thesis is to identify optimum set of feature extracted parameters and implement methods at various stages for oil spill detection from Synthetic Aperture Radar (SAR) imagery. More than 200 images of ERS-2, ENVSAT and RADARSAT 2 SAR sensor have been used to assess proposed feature vector for oil spill detection methodology, which involves three stages: segmentation for dark spot detection, feature extraction and classification of feature vector. Unfortunately oil spill is not only the phenomenon that can create a dark spot in SAR imagery. There are several others meteorological and oceanographic and wind induced phenomena which may lead to a dark spot in SAR imagery. Therefore, these dark objects also appear similar to the dark spot due to oil spill and are called as look-alikes. These look-alikes thus cause difficulty in detecting oil spill spots as their primary characteristic similar to oil spill spots. To get over this difficulty, feature extraction becomes important; a stage which may involve selection of appropriate feature extraction parameters. The main objective of this dissertation is to identify the optimum feature vector in order to segregate oil spill and ‘look-alike’ spots. A total of 44 Feature extracted parameters have been studied. For segmentation, four methods; based on edge detection, adaptive theresholding, artificial neural network (ANN) segmentation and the other on contrast split segmentation have been implemented. Spot features are extracted from both the dark spots themselves and their surroundings. Classification stage was performed using two different classification techniques, first one is based on ANN and the other based on a two-stage processing that combines classification tree analysis and fuzzy logic. A modified feature vector, including both new and improved features, is suggested for better description of different types of dark spots. An ANN classifier using full spectrum of feature parameters has also been developed and evaluated. The implemented methodology appears promising in detecting dark spots and discriminating oil spills from look-alikes and processing time is well below any operational service requirements

    Comparison of CNNs and Vision Transformers-Based Hybrid Models Using Gradient Profile Loss for Classification of Oil Spills in SAR Images

    Get PDF
    Oil spillage over a sea or ocean surface is a threat to marine and coastal ecosystems. Spaceborne synthetic aperture radar (SAR) data have been used efficiently for the detection of oil spills due to their operational capability in all-day all-weather conditions. The problem is often modeled as a semantic segmentation task. The images need to be segmented into multiple regions of interest such as sea surface, oil spill, lookalikes, ships, and land. Training of a classifier for this task is particularly challenging since there is an inherent class imbalance. In this work, we train a convolutional neural network (CNN) with multiple feature extractors for pixel-wise classification and introduce a new loss function, namely, “gradient profile” (GP) loss, which is in fact the constituent of the more generic spatial profile loss proposed for image translation problems. For the purpose of training, testing, and performance evaluation, we use a publicly available dataset with selected oil spill events verified by the European Maritime Safety Agency (EMSA). The results obtained show that the proposed CNN trained with a combination of GP, Jaccard, and focal loss functions can detect oil spills with an intersection over union (IoU) value of 63.95%. The IoU value for sea surface, lookalikes, ships, and land class is 96.00%, 60.87%, 74.61%, and 96.80%, respectively. The mean intersection over union (mIoU) value for all the classes is 78.45%, which accounts for a 13% improvement over the state of the art for this dataset. Moreover, we provide extensive ablation on different convolutional neural networks (CNNs) and vision transformers (ViTs)-based hybrid models to demonstrate the effectiveness of adding GP loss as an additional loss function for training. Results show that GP loss significantly improves the mIoU and F1_1 scores for CNNs as well as ViTs-based hybrid models. GP loss turns out to be a promising loss function in the context of deep learning with SAR images

    Automatic decision support system based on SAR data for oil spill detection

    Get PDF
    This is the accepted manuscript of the following article: Mera, D., Cotos, J., Varela-Pet, J., G. Rodríguez, P. and Caro, A. (2014). Automatic decision support system based on SAR data for oil spill detection. Computers & Geosciences, 72, pp.184-191Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are necessary to ensure proper response to environmental emergencies. Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillages on the oceans surface. Several Decision Support Systems have been based on this technology. This paper presents an automatic oil spill detection system based on SAR data which was developed on the basis of confirmed spillages and it was adapted to an important international shipping route off the Galician coast (northwest Iberian Peninsula). The system was supported by an adaptive segmentation process based on wind data as well as a shape oriented characterization algorithm. Moreover, two classifiers were developed and compared. Thus, image testing revealed up to 95.1% candidate labeling accuracy. Shared-memory parallel programming techniques were used to develop algorithms in order to improve above a 25% of the system processing timeThe authors wish to thank the financial support provided by the ‘Deputación da Coruña’ under the ‘Bolsas de Investigación 2013’ programmeS

    WEIBULL MULTIPLICATIVE MODEL AND MACHINE LEARNING MODELS FOR FULL-AUTOMATIC DARK-SPOT DETECTION FROM SAR IMAGES

    Get PDF
    As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method), synthetic aperture radar (SAR) can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks). As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images
    corecore