4,693 research outputs found

    Performing heavy transfers for offshore wind maintenance

    Get PDF
    As offshore wind farms become larger and further from the shore, there are strong economic and climate incentives to perform transfers required for operations and maintenance from floating vessels, rather than employing expensive and slow jack up rigs. However, successful transfers of heavy and sensitive equipment from a floating vessel (in all but benign sea/wind conditions) are heavily dependent on multiple degrees of freedom, high performance control. This project aims to bring a novel modelling and simulation methodology in Simulink that could be used to assess offshore wind installation and maintenance procedures. More specifically, the goal is to demonstrate that a crane prototype assumed to be located on a floating ship can transfer loads of hundreds of tons onto a fixed platform. Furthermore, this process should be completed with good precision and minimal impact force during equipment loading onto the stand. This problem has not yet been answered in research, with the only relevant patent in the field being the Ampelmann platform, a motionless bridge allowing technicians to access the offshore turbine. The first main contribution to knowledge of this thesis was the design of a 90 m crane that could handle a 660 tons load. This thesis presents a procedure, based on both mechanical/hydraulics design as well as empirical findings, which could be re-used for scaling the crane model to a more realistic dimension. It is worth noting that the goal here was to assess whether a realistically weighing piece of equipment could be stably handled, while the actual size of the crane was deemed unimportant. Another missing gap in literature this project wanted to fill was achieving active motion compensation for a larger scale system such as the current one. This refers to balancing out the base motions on multiple axes, so the payload can be moved on a given trajectory unaffected by them. Currently, research in the field mainly consists of crane mechanisms that feature active heave compensation, which only refers to the vertical axis. Hence, two control design methods were employed to assess the viability of heavy payload positioning from floating vessels through the development of a simulation approach using Simulink. The crane prototype was designed and modelled to operate under simulated vessel motions given by sea states with a significant wave height of 5 m and maximum wave frequency of 1 rad/s. Then, traditional control (feedback and feedforward) was designed to achieve active motion compensation with steady-state position errors under 20 cm. A second controller architecture was then designed/implemented as a comparison basis for the first one, with the aim being to find the most robust solution of the two. The nonlinear generalised minimum variance (NGMV) control algorithm was chosen for control design in this application. Due to its ability to compensate for significant system nonlinearities and the ease of implementation, NGMV was a good candidate for the task at hand. Tuning controller parameters to stabilize the system could also be based on the previously determined traditional control solutions. An investigation of controllers’ robustness against model mismatch was carried out by introducing various levels of uncertainty which influence actuators’ natural frequency to assess system sensitivity. The outcome of the investigation determined that traditional and NGMV controllers provided comparable regulating performance in terms of reference tracking and disturbance rejection, for the nominal case. This confirmed the assertion that the PID-based NGMV weightings selection is a useful starting point for controller tuning. Increasing the mismatch between the nominal system based on which the controllers’ were designed and the actual plant showed that the traditional control was marginally more robust in this application. The final contribution to knowledge this thesis aimed to bring was minimising the impact force during load placement on a fixed and rigid platform. To that end, the contact forces between the payload and a platform were first successfully modelled and measured. A switching algorithm between position and force control was then developed based on a methodology found in literature but on a microscopic scale project. To execute smooth load placement, an automated hybrid force/position control scheme was implemented. The proposed algorithm enabled position control on x and y axes, while minimising impact forces on the z-axis. Unfortunately, preliminary findings showed that there is still work to be done to claim any success in this regard. However, the author hopes this offers a good starting point for future work.As offshore wind farms become larger and further from the shore, there are strong economic and climate incentives to perform transfers required for operations and maintenance from floating vessels, rather than employing expensive and slow jack up rigs. However, successful transfers of heavy and sensitive equipment from a floating vessel (in all but benign sea/wind conditions) are heavily dependent on multiple degrees of freedom, high performance control. This project aims to bring a novel modelling and simulation methodology in Simulink that could be used to assess offshore wind installation and maintenance procedures. More specifically, the goal is to demonstrate that a crane prototype assumed to be located on a floating ship can transfer loads of hundreds of tons onto a fixed platform. Furthermore, this process should be completed with good precision and minimal impact force during equipment loading onto the stand. This problem has not yet been answered in research, with the only relevant patent in the field being the Ampelmann platform, a motionless bridge allowing technicians to access the offshore turbine. The first main contribution to knowledge of this thesis was the design of a 90 m crane that could handle a 660 tons load. This thesis presents a procedure, based on both mechanical/hydraulics design as well as empirical findings, which could be re-used for scaling the crane model to a more realistic dimension. It is worth noting that the goal here was to assess whether a realistically weighing piece of equipment could be stably handled, while the actual size of the crane was deemed unimportant. Another missing gap in literature this project wanted to fill was achieving active motion compensation for a larger scale system such as the current one. This refers to balancing out the base motions on multiple axes, so the payload can be moved on a given trajectory unaffected by them. Currently, research in the field mainly consists of crane mechanisms that feature active heave compensation, which only refers to the vertical axis. Hence, two control design methods were employed to assess the viability of heavy payload positioning from floating vessels through the development of a simulation approach using Simulink. The crane prototype was designed and modelled to operate under simulated vessel motions given by sea states with a significant wave height of 5 m and maximum wave frequency of 1 rad/s. Then, traditional control (feedback and feedforward) was designed to achieve active motion compensation with steady-state position errors under 20 cm. A second controller architecture was then designed/implemented as a comparison basis for the first one, with the aim being to find the most robust solution of the two. The nonlinear generalised minimum variance (NGMV) control algorithm was chosen for control design in this application. Due to its ability to compensate for significant system nonlinearities and the ease of implementation, NGMV was a good candidate for the task at hand. Tuning controller parameters to stabilize the system could also be based on the previously determined traditional control solutions. An investigation of controllers’ robustness against model mismatch was carried out by introducing various levels of uncertainty which influence actuators’ natural frequency to assess system sensitivity. The outcome of the investigation determined that traditional and NGMV controllers provided comparable regulating performance in terms of reference tracking and disturbance rejection, for the nominal case. This confirmed the assertion that the PID-based NGMV weightings selection is a useful starting point for controller tuning. Increasing the mismatch between the nominal system based on which the controllers’ were designed and the actual plant showed that the traditional control was marginally more robust in this application. The final contribution to knowledge this thesis aimed to bring was minimising the impact force during load placement on a fixed and rigid platform. To that end, the contact forces between the payload and a platform were first successfully modelled and measured. A switching algorithm between position and force control was then developed based on a methodology found in literature but on a microscopic scale project. To execute smooth load placement, an automated hybrid force/position control scheme was implemented. The proposed algorithm enabled position control on x and y axes, while minimising impact forces on the z-axis. Unfortunately, preliminary findings showed that there is still work to be done to claim any success in this regard. However, the author hopes this offers a good starting point for future work

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Automated driving and autonomous functions on road vehicles

    Get PDF
    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest – and subsequent hiatus – of Automated Highway Systems in the 1990’s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of “self-driving cars” – robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in “computerisation” of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators

    Advanced Discrete-Time Control Methods for Industrial Applications

    Full text link
    This thesis focuses on developing advanced control methods for two industrial systems in discrete-time aiming to enhance their performance in delivering the control objectives as well as considering the practical aspects. The first part addresses wind power dispatch into the electricity network using a battery energy storage system (BESS). To manage the amount of energy sold to the electricity market, a novel control scheme is developed based on discrete-time model predictive control (MPC) to ensure the optimal operation of the BESS in the presence of practical constraints. The control scheme follows a decision policy to sell more energy at peak demand times and store it at off-peaks in compliance with the Australian National Electricity Market rules. The performance of the control system is assessed under different scenarios using actual wind farm and electricity price data in simulation environment. The second part considers the control of overhead crane systems for automatic operation. To achieve high-speed load transportation with high-precision and minimum load swings, a new modeling approach is developed based on independent joint control strategy which considers actuators as the main plant. The nonlinearities of overhead crane dynamics are treated as disturbances acting on each actuator. The resulting model enables us to estimate the unknown parameters of the system including coulomb friction constants. A novel load swing control is also designed based on passivity-based control to suppress load swings. Two discrete-time controllers are then developed based on MPC and state feedback control to track reference trajectories along with a feedforward control to compensate for disturbances using computed torque control and a novel disturbance observer. The practical results on an experimental overhead crane setup demonstrate the high performance of the designed control systems.Comment: PhD Thesis, 230 page

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Enhanced pre-clinical assessment of total knee replacement using computational modelling with experimental corroboration & probabilistic applications

    No full text
    Demand for Total Knee Replacement (TKR) surgery is high and rising; not just in numbers of procedures, but in the diversity of patient demographics and increase of expectations. Accordingly, greater efforts are being invested into the pre-clinical analysis of TKR designs, to improve their performance in-vivo. A wide range of experimental and computational methods are used to analyse TKR performance pre-clinically. However, direct validation of these methods and models is invariably limited by the restrictions and challenges of clinical assessment, and confounded by the high variability of results seen in-vivo.Consequently, the need exists to achieve greater synergy between different pre-clinical analysis methods. By demonstrating robust corroboration between in-silico and in-vitro testing, and both identifying & quantifying the key sources of uncertainty, greater confidence can be placed in these assessment tools. This thesis charts the development of a new generation of fast computational models for TKR test platforms, with closer collaboration with in-vitro test experts (and consequently more rigorous corroboration with experimental methods) than previously.Beginning with basic tibiofemoral simulations, the complexity of the models was progressively increased, to include in-silico wear prediction, patellofemoral & full lower limb models, rig controller-emulation, and accurate system dynamics. At each stage, the models were compared extensively with data from the literature and experimental tests results generated specifically for corroboration purposes.It is demonstrated that when used in conjunction with, and complementary to, the corresponding experimental work, these higher-integrity in-silico platforms can greatly enrich the range and quality of pre-clinical data available for decision-making in the design process, as well as understanding of the experimental platform dynamics. Further, these models are employed within a probabilistic framework to provide a statistically-quantified assessment of the input factors most influential to variability in the mechanical outcomes of TKR testing. This gives designers a much richer holistic visibility of the true system behaviour than extant 'deterministic' simulation approaches (both computational and experimental).By demonstrating the value of better corroboration and the benefit of stochastic approaches, the methods used here lay the groundwork for future advances in pre-clinical assessment of TKR. These fast, inexpensive models can complement existing approaches, and augment the information available for making better design decisions prior to clinical trials, accelerating the design process, and ultimately leading to improved TKR delivery in-vivo to meet future demands

    Experimental investigation of the mooring system of a wave energy converter in operating and extreme wave conditions

    Get PDF
    A proper design of the mooring systems for Wave Energy Converters (WECs) requires an accurate investigation of both operating and extreme wave conditions. A careful analysis of these systems is required to design a mooring configuration that ensures station keeping, reliability, maintainability, and low costs, without affecting the WEC dynamics. In this context, an experimental campaign on a 1:20 scaled prototype of the ISWEC (Inertial Sea Wave Energy Converter), focusing on the influence of the mooring layout on loads in extreme wave conditions, is presented and discussed. Two mooring configurations composed of multiple slack catenaries with sub-surface buoys, with or without clump-weights, have been designed and investigated experimentally. Tests in regular, irregular, and extreme waves for a moored model of the ISWEC device have been performed at the University of Naples Federico II. The aim is to identify a mooring solution that could guarantee both correct operation of the device and load carrying in extreme sea conditions. Pitch motion and loads in the rotational joint have been considered as indicators of the device hydrodynamic behavior and mooring configuration impact on the WEC

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Fusion of low-cost and light-weight sensor system for mobile flexible manipulator

    Get PDF
    There is a need for non-industrial robots such as in homecare and eldercare. Light-weight mobile robots preferred as compared to conventional fixed based robots as the former is safe, portable, convenient and economical to implement. Sensor system for light-weight mobile flexible manipulator is studied in this research. A mobile flexible link manipulator (MFLM) contributes to high amount of vibrations at the tip, giving rise to inaccurate position estimations. In a control system, there inevitably exists a lag between the sensor feedback and the controller. Consequently, it contributed to instable control of the MFLM. Hence, there it is a need to predict the tip trajectory of the MFLM. Fusion of low cost sensors is studied to enhance prediction accuracy at the MFLM’s tip. A digital camera and an accelerometer are used predict tip of the MFLM. The main disadvantage of camera is the delayed feedback due to the slow data rate and long processing time, while accelerometer composes cumulative errors. Wheel encoder and webcam are used for position estimation of the mobile platform. The strengths and limitations of each sensor were compared. To solve the above problem, model based predictive sensor systems have been investigated for used on the mobile flexible link manipulator using the selected sensors. Mathematical models were being developed for modeling the reaction of the mobile platform and flexible manipulator when subjected to a series of input voltages and loads. The model-based Kalman filter fusion prediction algorithm was developed, which gave reasonability good predictions of the vibrations of the tip of flexible manipulator on the mobile platform. To facilitate evaluation of the novel predictive system, a mobile platform was fabricated, where the flexible manipulator and the sensors are mounted onto the platform. Straight path motions were performed for the experimental tests. The results showed that predictive algorithm with modelled input to the Extended Kalman filter have best prediction to the tip vibration of the MFLM

    Thermal Performance of a Multi-Axis Smoothing Cell

    Get PDF
    Multi Axis Robots have traditionally been used in industry for pick and place, de-burring, and welding operations. Increasing technological advances have broadened their application and today robots are increasingly being used for higher precision applications in the medical and nuclear sectors. In order to use robots in such roles it is important to understand their performance. Thermal effects in machine tools are acknowledged to account for up to 70% of all errors (Bryan J. , 1990) and therefore need to be considered. This research investigates thermal influences on the accuracy and repeatability of a six degree of freedom robotic arm, which forms an integral part of a smoothing cell. The cell forms part of a process chain currently being developed for the processing of high accuracy freeform surfaces, intended for use on the next generation of ground based telescopes. The robot studied was a FANUC 710i/50 with a lapping spindle the end effector. The robot geometric motions were characterised and the structure was thermally mapped at the latter velocity. The thermal mapping identified the key areas of the robot structure requiring more detailed analysis. Further investigation looked into thermal variations in conjunction with geometric measurements in order to characterise the robot thermal performance. Results showed thermal variations of up to 13ÂșC over a period of six hours, these produced errors of up to 100ÎŒm over the 1300mm working stroke slow. Thermal modelling carried out predicted geometric variation of 70ÎŒm to 122ÎŒm for thermal variations up to 13ÂșC over a period of six hours. The modelling was 50% to 75% efficient in predicting thermal error magnitudes in the X axis. With the geometric and modelling data a recommendation for offline compensation would enable significant improvement in the robots positioning capability to be achieved
    • 

    corecore