574 research outputs found

    Diffusion-based clock synchronization for molecular communication under inverse Gaussian distribution

    Get PDF
    Nanonetworks are expected to expand the capabilities of individual nanomachines by allowing them to cooperate and share information by molecular communication. The information molecules are released by the transmitter nanomachine and diffuse across the aqueous channel as a Brownian motion holding the feature of a strong random movement with a large propagation delay. In order to ensure an effective real-time cooperation, it is necessary to keep the clock synchronized among the nanomachines in the nanonetwork. This paper proposes a model on a two-way message exchange mechanism with the molecular propagation delay based on the inverse Gaussian distribution. The clock offset and clock skew are estimated by the maximum likelihood estimation (MLE). Simulation results by MATLAB show that the mean square errors (MSE) of the estimated clock offsets and clock skews can be reduced and converge with a number of rounds of message exchanges. The comparison of the proposed scheme with a clock synchronization method based on symmetrical propagation delay demonstrates that our proposed scheme can achieve a better performance in terms of accuracy

    Clock Synchronization in Wireless Sensor Networks: An Overview

    Get PDF
    The development of tiny, low-cost, low-power and multifunctional sensor nodes equipped with sensing, data processing, and communicating components, have been made possible by the recent advances in micro-electro-mechanical systems (MEMS) technology. Wireless sensor networks (WSNs) assume a collection of such tiny sensing devices connected wirelessly and which are used to observe and monitor a variety of phenomena in the real physical world. Many applications based on these WSNs assume local clocks at each sensor node that need to be synchronized to a common notion of time. This paper reviews the existing clock synchronization protocols for WSNs and the methods of estimating clock offset and clock skew in the most representative clock synchronization protocols for WSNs

    An Exploratory Analysis Of A Time Synchronization Protocol For UAS

    Get PDF
    This dissertation provides a numerical analysis of a Receiver Only Synchronization (ROS) protocol which is proposed for use by Unmanned Aircraft Systems (UAS) in Beyond Visual Line of Sight (BVLOS) operations. The use of ROS protocols could reinforce current technologies that enable transmission over 5G cell networks, decreasing latency issues and enabling the incorporation of an increased number of UAS to the network, without loss of accuracy. A minimum squared error (MSE)-based accuracy of clock offset and clock skew estimations was obtained using the number of iterations and number of observations as independent parameters. Although the model converged after only four iterations, the number of observations needed was considerably large, of no less than about 250. The noise, introduced in the system through the first residual, the correlation parameter and the disturbance terms, was assumed to be autocorrelated. Previous studies suggested that correlated noise might be typical in multipath scenarios, or in case of damaged antennas. Four noise distributions: gaussian, exponential, gamma and Weibull were considered. Each of them is adapted to different noise sources in the OSI model. Dispersion of results in the first case, the only case with zero mean, was checked against the Cramér-Rao Bound (CRB) limit. Results confirmed that the scheme proposed was fully efficient. Moreover, results with the other three cases were less promising, thus demonstrating that only zero mean distributions could deliver good results. This fact would limit the proposed scheme application in multipath scenarios, where echoes of previous signals may reach the receiver at delayed times. In the second part, a wake/sleep scheme was imposed on the model, concluding that for wake/sleep ratios below 92/08 results were not accurate at p=.05 level. The study also evaluated the impact of noise levels in the time domain and showed that above -2dB in time a substantial contribution of error terms disturbed the initial estimations significantly. The tests were performed in Matlab®. Based on the results, three venues confirming the assumptions made were proposed for future work. Some final reflections on the use of 5G in aviation brought the present dissertation to a close

    One symbol blind synchronization in SIMO molecular communication systems

    Get PDF
    Molecular communication offers new possibilities in the micro-and nano-scale application environments. Similar to other communication paradigms, molecular communication also requires clock synchronization between the transmitter and the receiver nanomachine in many time-and control-sensitive applications. This letter presents a novel high-efficiency blind clock synchronization mechanism. Without knowing the channel parameters of the diffusion coefficient and the transmitter-receiver distance, the receiver only requires one symbol to achieve synchronization. The samples are used to estimate the propagation delay by least square method and achieve clock synchronization. Single-input multiple-output (SIMO) diversity design is then proposed to mitigate channel noise and therefore to improve the synchronization accuracy. The simulation results show that the proposed clock synchronization mechanism has a good performance and may help chronopharmaceutical drug delivery applications

    Robust time synchronisation for industrial internet of things by H∞ output feedback control

    Get PDF
    Precise timing over timestamped packet exchange communication is an enabling technology in the mission-critical industrial Internet of Things, particularly when satellite-based timing is unavailable. The main challenge is to ensure timing accuracy when the clock synchronisation system is subject to disturbances caused by the drifting frequency, time-varying delay, jitter, and timestamping uncertainty. In this work, a Robust Packet-Coupled Oscillators (R-PkCOs) protocol is proposed to reduce the effects of perturbations manifested in the drifting clock, timestamping uncertainty and delays. First, in the spanning tree clock topology, time synchronisation between an arbitrary pair of clocks is modelled as a state-space model, where clock states are coupled with each other by one-way timestamped packet exchange (referred to as packet coupling), and the impacts of both drifting frequency and delays are modelled as disturbances. A static output controller is adopted to adjust the drifting clock. The H∞ robust control design solution is proposed to guarantee that the ratio between the modulus of synchronisation precision and the magnitude of the disturbances is always less than a given value. Therefore, the proposed time synchronisation protocol is robust against the disturbances, which means that the impacts of drifting frequency and delays on the synchronisation accuracy are limited. The one-hour experimental results demonstrate that the proposed R-PkCOs protocol can realise time synchronisation with the precision of six microseconds in a 21-node IEEE 802.15.4 network. This work has widespread impacts in the process automation of automotive, mining, oil and gas industries

    Intelligent antenna sharing in cooperative diversity wireless networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (p. 143-152).Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require simultaneous relay transmissions at the same frequency bands, using distributed space-time coding algorithms. Careful design of distributed space-time coding for the relay channel is usually based on global knowledge of some network parameters or is usually left for future investigation, if there is more than one cooperative relay. We propose a novel scheme that eliminates the need for space-time coding and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing gain tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M relay nodes is required. Additionally, the proposed scheme increases the outage and ergodic capacity, compared to non-cooperative communication with increasing number of participating relays, at the low SNR regime and under a total transmission power constraint.(cont.) Coordination among the participating relays is based on a novel timing protocol that exploits local measurements of the instantaneous channel conditions. The method is distributed and allows for fast selection of the best relay as compared to the channel coherence time. In addition, a methodology to evaluate relay selection performance for any kind of wireless channel statistics is provided. Other methods of network coordination, inspired by natural phenomena of decentralized time synchronization, are analyzed in theory and implemented in practice. It was possible to implement the proposed, virtual antenna formation technique in a custom network of single antenna, half-duplex radios.by Aggelos Anastasiou Bletsas.Ph.D

    PET System Synchronization and Timing Resolution Using High-Speed Data Links

    Full text link
    Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this effect to be negligible on overall timing resolution. This is usually achieved by connecting all boards to a common backplane with a precise clock delivery network; however, this approach forces a rigid structure on the whole PET system and may pose scalability problems. © 2006 IEEE.Manuscript received June 14, 2010; revised November 18, 2010; accepted March 31, 2011. Date of publication April 21, 2011; date of current version August 17, 2011. This work was supported in part by the Spanish Ministry of Science and Innovation under FPU Grant AP2006-04275 and CICYT Grant FIS2010-21216-C02-02.Aliaga Varea, RJ.; Monzó Ferrer, JM.; Spaggiari, M.; Ferrando Jódar, N.; Gadea Gironés, R.; Colom Palero, RJ. (2011). PET System Synchronization and Timing Resolution Using High-Speed Data Links. IEEE Transactions on Nuclear Science. 58(4):1596-1605. https://doi.org/10.1109/TNS.2011.2140130S1596160558

    A Fast Digital Integrator for magnetic measurements

    Get PDF
    In this work, the Fast Digital Integrator (FDI), conceived for characterizing dynamic features of superconducting magnets and measuring fast transients of magnetic fields at the European Organization for Nuclear Research (CERN) and other high-energy physics research centres, is presented. FDI development was carried out inside a framework of cooperation between the group of Magnet Tests and Measurements of CERN and the Department of Engineering of the University of Sannio. Drawbacks related to measurement time decrease of main high-performance analog-to-digital architectures, such as Sigma-Delta and integrators, are overcome by founding the design on (i) a new generation of successive-approximation converters, for high resolution (18-bit) at high rate (500 kS/s), (ii) a digital signal processor, for on-line down-sampling by integrating the input signal, (iii) a custom time base, based on a Universal Time Counter, for reducing time-domain uncertainty, and (iv) a PXI board, for high bus transfer rate, as well as noise and heat immunity. A metrological analysis, aimed at verifying the effect of main uncertainty sources, systematic errors, and design parameters on the instrument performance is presented. In particular, results of an analytical study, a preliminary numerical analysis, and a comprehensive multi-factor analysis carried out to confirm the instrument design, are reported. Then, the selection of physical components and the FDI implementation on a PXI board according to the above described conceptual architecture are highlighted. The on-line integration algorithm, developed on the DSP in order to achieve a real-time Nyquist bandwidth of 125 kHz on the flux, is described. C++ classes for remote control of FDI, developed as a part of a new software framework, the Flexible Framework for Magnetic Measurements, conceived for managing a wide spectrum of magnetic measurements techniques, are described. Experimental results of metrological and throughput characterization of FDI are reported. In particular, in metrological characterization, FDI working as a digitizer and as an integrator, was assessed by means of static, dynamic, and time base tests. Typical values of static integral nonlinearity of ±7 ppm, ±3 ppm of 24-h stability, and 108 dB of signal-to-noise-anddistortion ratio at 10 Hz on Nyquist bandwidth of 125 kHz, were surveyed during the integrator working. The actual throughput rate was measured by a specific procedure of PXI bus analysis, by highlighting typical values of 1 MB/s. Finally, the experimental campaign, carried out at CERN facilities of superconducting magnet testing for on-field qualification of FDI, is illustrated. In particular, the FDI was included in a measurement station using also the new generation of fast transducers. The performance of such a station was compared with the one of the previous standard station used in series tests for qualifying LHC magnets. All the results highlight the FDI full capability of acting as the new de-facto standard for high-performance magnetic measurements at CERN and in other high-energy physics research centres

    Scheduling Heterogeneous HPC Applications in Next-Generation Exascale Systems

    Get PDF
    Next generation HPC applications will increasingly time-share system resources with emerging workloads such as in-situ analytics, resilience tasks, runtime adaptation services and power management activities. HPC systems must carefully schedule these co-located codes in order to reduce their impact on application performance. Among the techniques traditionally used to mitigate the performance effects of time- share systems is gang scheduling. This approach, however, leverages global synchronization and time agreement mechanisms that will become hard to support as systems increase in size. Alternative performance interference mitigation approaches must be explored for future HPC systems. This dissertation evaluates the impacts of workload concurrency in future HPC systems. It uses simulation and modeling techniques to study the performance impacts of existing and emerging interference sources on a selection of HPC benchmarks, mini-applications, and applications. It also quantifies the cost and benefits of different approaches to scheduling co-located workloads, studies performance interference mitigation solutions based on gang scheduling, and examines their synchronization requirements. To do so, this dissertation presents and leverages a new Extreme Value Theory- based model to characterize interference sources, and investigate their impact on Bulk Synchronous Parallel (BSP) applications. It demonstrates how this model can be used to analyze the interference attenuation effects of alternative fine-grained OS scheduling approaches based on periodic real time schedulers. This analysis can, in turn, guide the design of those mitigation techniques by providing tools to understand the tradeoffs of selecting scheduling parameters
    • …
    corecore