759 research outputs found

    Proactive content caching in future generation communication networks: Energy and security considerations

    Get PDF
    The proliferation of hand-held devices and Internet of Things (IoT) applications has heightened demand for popular content download. A high volume of content streaming/downloading services during peak hours can cause network congestion. Proactive content caching has emerged as a prospective solution to tackle this congestion problem. In proactive content caching, data storage units are used to store popular content in helper nodes at the network edge. This contributes to a reduction of peak traffic load and network congestion. However, data storage units require additional energy, which offers a challenge to researchers that intend to reduce energy consumption up to 90% in next generation networks. This thesis presents proactive content caching techniques to reduce grid energy consumption by utilizing renewable energy sources to power-up data storage units in helper nodes. The integration of renewable energy sources with proactive caching is a significant challenge due to the intermittent nature of renewable energy sources and investment costs. In this thesis, this challenge is tackled by introducing strategies to determine the optimal time of the day for content caching and optimal scheduling of caching nodes. The proposed strategies consider not only the availability of renewable energy but also temporal changes in network trac to reduce associated energy costs. While proactive caching can facilitate the reduction of peak trac load and the integration of renewable energy, cached content objects at helper nodes are often more vulnerable to malicious attacks due to less stringent security at edge nodes. Potential content leakage can lead to catastrophic consequences, particularly for cache-equipped Industrial Internet of Things (IIoT) applications. In this thesis, the concept of \trusted caching nodes (TCNs) is introduced. TCNs cache popular content objects and provide security services to connected links. The proposed study optimally allocates TCNs and selects the most suitable content forwarding paths. Furthermore, a caching strategy is designed for mobile edge computing systems to support IoT task offloading. The strategy optimally assigns security resources to offloaded tasks while satisfying their individual requirements. However, security measures often contribute to overheads in terms of both energy consumption and delay. Consequently, in this thesis, caching techniques have been designed to investigate the trade-off between energy consumption and probable security breaches. Overall, this thesis contributes to the current literature by simultaneously investigating energy and security aspects of caching systems whilst introducing solutions to relevant research problems

    Quality-driven resource utilization methods for video streaming in wireless communication networks

    Get PDF
    This research is focused on the optimisation of resource utilisation in wireless mobile networks with the consideration of the users’ experienced quality of video streaming services. The study specifically considers the new generation of mobile communication networks, i.e. 4G-LTE, as the main research context. The background study provides an overview of the main properties of the relevant technologies investigated. These include video streaming protocols and networks, video service quality assessment methods, the infrastructure and related functionalities of LTE, and resource allocation algorithms in mobile communication systems. A mathematical model based on an objective and no-reference quality assessment metric for video streaming, namely Pause Intensity, is developed in this work for the evaluation of the continuity of streaming services. The analytical model is verified by extensive simulation and subjective testing on the joint impairment effects of the pause duration and pause frequency. Various types of the video contents and different levels of the impairments have been used in the process of validation tests. It has been shown that Pause Intensity is closely correlated with the subjective quality measurement in terms of the Mean Opinion Score and this correlation property is content independent. Based on the Pause Intensity metric, an optimised resource allocation approach is proposed for the given user requirements, communication system specifications and network performances. This approach concerns both system efficiency and fairness when establishing appropriate resource allocation algorithms, together with the consideration of the correlation between the required and allocated data rates per user. Pause Intensity plays a key role here, representing the required level of Quality of Experience (QoE) to ensure the best balance between system efficiency and fairness. The 3GPP Long Term Evolution (LTE) system is used as the main application environment where the proposed research framework is examined and the results are compared with existing scheduling methods on the achievable fairness, efficiency and correlation. Adaptive video streaming technologies are also investigated and combined with our initiatives on determining the distribution of QoE performance across the network. The resulting scheduling process is controlled through the prioritization of users by considering their perceived quality for the services received. Meanwhile, a trade-off between fairness and efficiency is maintained through an online adjustment of the scheduler’s parameters. Furthermore, Pause Intensity is applied to act as a regulator to realise the rate adaptation function during the end user’s playback of the adaptive streaming service. The adaptive rates under various channel conditions and the shape of the QoE distribution amongst the users for different scheduling policies have been demonstrated in the context of LTE. Finally, the work for interworking between mobile communication system at the macro-cell level and the different deployments of WiFi technologies throughout the macro-cell is presented. A QoEdriven approach is proposed to analyse the offloading mechanism of the user’s data (e.g. video traffic) while the new rate distribution algorithm reshapes the network capacity across the macrocell. The scheduling policy derived is used to regulate the performance of the resource allocation across the fair-efficient spectrum. The associated offloading mechanism can properly control the number of the users within the coverages of the macro-cell base station and each of the WiFi access points involved. The performance of the non-seamless and user-controlled mobile traffic offloading (through the mobile WiFi devices) has been evaluated and compared with that of the standard operator-controlled WiFi hotspots
    • …
    corecore