740 research outputs found

    An Efficient Hidden Markov Model for Offline Handwritten Numeral Recognition

    Full text link
    Traditionally, the performance of ocr algorithms and systems is based on the recognition of isolated characters. When a system classifies an individual character, its output is typically a character label or a reject marker that corresponds to an unrecognized character. By comparing output labels with the correct labels, the number of correct recognition, substitution errors misrecognized characters, and rejects unrecognized characters are determined. Nowadays, although recognition of printed isolated characters is performed with high accuracy, recognition of handwritten characters still remains an open problem in the research arena. The ability to identify machine printed characters in an automated or a semi automated manner has obvious applications in numerous fields. Since creating an algorithm with a one hundred percent correct recognition rate is quite probably impossible in our world of noise and different font styles, it is important to design character recognition algorithms with these failures in mind so that when mistakes are inevitably made, they will at least be understandable and predictable to the person working with theComment: 6pages, 5 figure

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure

    A hypothesize-and-verify framework for Text Recognition using Deep Recurrent Neural Networks

    Full text link
    Deep LSTM is an ideal candidate for text recognition. However text recognition involves some initial image processing steps like segmentation of lines and words which can induce error to the recognition system. Without segmentation, learning very long range context is difficult and becomes computationally intractable. Therefore, alternative soft decisions are needed at the pre-processing level. This paper proposes a hybrid text recognizer using a deep recurrent neural network with multiple layers of abstraction and long range context along with a language model to verify the performance of the deep neural network. In this paper we construct a multi-hypotheses tree architecture with candidate segments of line sequences from different segmentation algorithms at its different branches. The deep neural network is trained on perfectly segmented data and tests each of the candidate segments, generating unicode sequences. In the verification step, these unicode sequences are validated using a sub-string match with the language model and best first search is used to find the best possible combination of alternative hypothesis from the tree structure. Thus the verification framework using language models eliminates wrong segmentation outputs and filters recognition errors
    • …
    corecore