1,851 research outputs found

    Derandomization of Online Assignment Algorithms for Dynamic Graphs

    Full text link
    This paper analyzes different online algorithms for the problem of assigning weights to edges in a fully-connected bipartite graph that minimizes the overall cost while satisfying constraints. Edges in this graph may disappear and reappear over time. Performance of these algorithms is measured using simulations. This paper also attempts to derandomize the randomized online algorithm for this problem

    Analysis of algorithms for online routing and scheduling in networks

    Get PDF
    We study situations in which an algorithm must make decisions about how to best route and schedule data transfer requests in a communication network before each transfer leaves its source. For some situations, such as those requiring quality of service guarantees, this is essential. For other situations, doing work in advance can simplify decisions in transit and increase the speed of the network. In order to reflect realistic scenarios, we require that our algorithms be online, or make their decisions without knowing future requests. We measure the efficiency of an online algorithm by its competitive ratio, which is the maximum ratio, over all request sequences, of the cost of the online algorithm\u27s solution to that of an optimal solution constructed by knowing all the requests in advance.;We identify and study two distinct variations of this general problem. In the first, data transfer requests are permanent virtual circuit requests in a circuit-switched network and the goal is to minimize the network congestion caused by the route assignment. In the second variation, data transfer requests are packets in a packet-switched network and the goal is to minimize the makespan of the schedule, or the time that the last packet reaches its destination. We present new lower bounds on the competitive ratio of any online algorithm with respect to both network congestion and makespan.;We consider two greedy online algorithms for permanent virtual circuit routing on arbitrary networks with unit capacity links, and prove both lower and upper bounds on their competitive ratios. While these greedy algorithms are not optimal, they can be expected to perform well in many circumstances and require less time to make a decision, when compared to a previously discovered asymptotically optimal online algorithm. For the online packet routing and scheduling problem, we consider an algorithm which simply assigns to each packet a priority based upon its arrival time. No packet is delayed by another packet with a lower priority. We analyze the competitive ratio of this algorithm on linear array, tree, and ring networks

    A Logically Centralized Approach for Control and Management of Large Computer Networks

    Get PDF
    Management of large enterprise and Internet Service Provider networks is a complex, error-prone, and costly challenge. It is widely accepted that the key contributors to this complexity are the bundling of control and data forwarding in traditional routers and the use of fully distributed protocols for network control. To address these limitations, the networking research community has been pursuing the vision of simplifying the functional role of a router to its primary task of packet forwarding. This enables centralizing network control at a decision plane where network-wide state can be maintained, and network control can be centrally and consistently enforced. However, scalability and fault-tolerance concerns with physical centralization motivate the need for a more flexible and customizable approach. This dissertation is an attempt at bridging the gap between the extremes of distribution and centralization of network control. We present a logically centralized approach for the design of network decision plane that can be realized by using a set of physically distributed controllers in a network. This approach is aimed at giving network designers the ability to customize the level of control and management centralization according to the scalability, fault-tolerance, and responsiveness requirements of their networks. Our thesis is that logical centralization provides a robust, reliable, and efficient paradigm for management of large networks and we present several contributions to prove this thesis. For network planning, we describe techniques for optimizing the placement of network controllers and provide guidance on the physical design of logically centralized networks. For network operation, algorithms for maintaining dynamic associations between the decision plane and network devices are presented, along with a protocol that allows a set of network controllers to coordinate their decisions, and present a unified interface to the managed network devices. Furthermore, we study the trade-offs in decision plane application design and provide guidance on application state and logic distribution. Finally, we present results of extensive numerical and simulative analysis of the feasibility and performance of our approach. The results show that logical centralization can provide better scalability and fault-tolerance while maintaining performance similarity with traditional distributed approach

    Timely processing of big data in collaborative large-scale distributed systems

    Get PDF
    Today’s Big Data phenomenon, characterized by huge volumes of data produced at very high rates by heterogeneous and geographically dispersed sources, is fostering the employment of large-scale distributed systems in order to leverage parallelism, fault tolerance and locality awareness with the aim of delivering suitable performances. Among the several areas where Big Data is gaining increasing significance, the protection of Critical Infrastructure is one of the most strategic since it impacts on the stability and safety of entire countries. Intrusion detection mechanisms can benefit a lot from novel Big Data technologies because these allow to exploit much more information in order to sharpen the accuracy of threats discovery. A key aspect for increasing even more the amount of data at disposal for detection purposes is the collaboration (meant as information sharing) among distinct actors that share the common goal of maximizing the chances to recognize malicious activities earlier. Indeed, if an agreement can be found to share their data, they all have the possibility to definitely improve their cyber defenses. The abstraction of Semantic Room (SR) allows interested parties to form trusted and contractually regulated federations, the Semantic Rooms, for the sake of secure information sharing and processing. Another crucial point for the effectiveness of cyber protection mechanisms is the timeliness of the detection, because the sooner a threat is identified, the faster proper countermeasures can be put in place so as to confine any damage. Within this context, the contributions reported in this thesis are threefold * As a case study to show how collaboration can enhance the efficacy of security tools, we developed a novel algorithm for the detection of stealthy port scans, named R-SYN (Ranked SYN port scan detection). We implemented it in three distinct technologies, all of them integrated within an SR-compliant architecture that allows for collaboration through information sharing: (i) in a centralized Complex Event Processing (CEP) engine (Esper), (ii) in a framework for distributed event processing (Storm) and (iii) in Agilis, a novel platform for batch-oriented processing which leverages the Hadoop framework and a RAM-based storage for fast data access. Regardless of the employed technology, all the evaluations have shown that increasing the number of participants (that is, increasing the amount of input data at disposal), allows to improve the detection accuracy. The experiments made clear that a distributed approach allows for lower detection latency and for keeping up with higher input throughput, compared with a centralized one. * Distributing the computation over a set of physical nodes introduces the issue of improving the way available resources are assigned to the elaboration tasks to execute, with the aim of minimizing the time the computation takes to complete. We investigated this aspect in Storm by developing two distinct scheduling algorithms, both aimed at decreasing the average elaboration time of the single input event by decreasing the inter-node traffic. Experimental evaluations showed that these two algorithms can improve the performance up to 30%. * Computations in online processing platforms (like Esper and Storm) are run continuously, and the need of refining running computations or adding new computations, together with the need to cope with the variability of the input, requires the possibility to adapt the resource allocation at runtime, which entails a set of additional problems. Among them, the most relevant concern how to cope with incoming data and processing state while the topology is being reconfigured, and the issue of temporary reduced performance. At this aim, we also explored the alternative approach of running the computation periodically on batches of input data: although it involves a performance penalty on the elaboration latency, it allows to eliminate the great complexity of dynamic reconfigurations. We chose Hadoop as batch-oriented processing framework and we developed some strategies specific for dealing with computations based on time windows, which are very likely to be used for pattern recognition purposes, like in the case of intrusion detection. Our evaluations provided a comparison of these strategies and made evident the kind of performance that this approach can provide
    • …
    corecore