996 research outputs found

    Self-Regulation, Mediators, and E-Learning: A Field Experiment in Rural Belize

    Get PDF
    Can lessons from IS research be applied on a small scale in rural environments to help a country develop? Students in rural schools in Belize often lack access to well-trained subject experts, score lower on national exams, and enroll in secondary schools at a lower rate than urban students. Utilizing mobile Internet technologies, students living without electricity can now access educational resources similar to urban students. How best to utilize these resources to improve students’ learning outcomes remains to be solved. This article first describes and compares a theory originating in the developed world (self-regulated learning) with one originating in the developing world (minimally invasive education). Second, it presents a framework combining constructs from both theories. Finally, it focuses on learning outcomes as measured by students’ cognitive ability, self-efficacy and motivation and compares a self-organized learning environment with one enhanced by self-regulated strategies, through a quasi-experimental design

    Policy-Aware Unbiased Learning to Rank for Top-k Rankings

    Get PDF
    Counterfactual Learning to Rank (LTR) methods optimize ranking systems using logged user interactions that contain interaction biases. Existing methods are only unbiased if users are presented with all relevant items in every ranking. There is currently no existing counterfactual unbiased LTR method for top-k rankings. We introduce a novel policy-aware counterfactual estimator for LTR metrics that can account for the effect of a stochastic logging policy. We prove that the policy-aware estimator is unbiased if every relevant item has a non-zero probability to appear in the top-k ranking. Our experimental results show that the performance of our estimator is not affected by the size of k: for any k, the policy-aware estimator reaches the same retrieval performance while learning from top-k feedback as when learning from feedback on the full ranking. Lastly, we introduce novel extensions of traditional LTR methods to perform counterfactual LTR and to optimize top-k metrics. Together, our contributions introduce the first policy-aware unbiased LTR approach that learns from top-k feedback and optimizes top-k metrics. As a result, counterfactual LTR is now applicable to the very prevalent top-k ranking setting in search and recommendation.Comment: SIGIR 2020 full conference pape

    Unbiased Learning to Rank: Counterfactual and Online Approaches

    Get PDF
    This tutorial covers and contrasts the two main methodologies in unbiased Learning to Rank (LTR): Counterfactual LTR and Online LTR. There has long been an interest in LTR from user interactions, however, this form of implicit feedback is very biased. In recent years, unbiased LTR methods have been introduced to remove the effect of different types of bias caused by user-behavior in search. For instance, a well addressed type of bias is position bias: the rank at which a document is displayed heavily affects the interactions it receives. Counterfactual LTR methods deal with such types of bias by learning from historical interactions while correcting for the effect of the explicitly modelled biases. Online LTR does not use an explicit user model, in contrast, it learns through an interactive process where randomized results are displayed to the user. Through randomization the effect of different types of bias can be removed from the learning process. Though both methodologies lead to unbiased LTR, their approaches differ considerably, furthermore, so do their theoretical guarantees, empirical results, effects on the user experience during learning, and applicability. Consequently, for practitioners the choice between the two is very substantial. By providing an overview of both approaches and contrasting them, we aim to provide an essential guide to unbiased LTR so as to aid in understanding and choosing between methodologies.Comment: Abstract for tutorial appearing at SIGIR 201

    Gesture Recognition and Control for Semi-Autonomous Robotic Assistant Surgeons

    Get PDF
    The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This thesis explores the solutions adopted in pursuing automation in robotic minimally-invasive surgeries (R-MIS) and presents a novel cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller

    Unbiased Learning to Rank: Counterfactual and Online Approaches

    Get PDF

    Estimating Position Bias without Intrusive Interventions

    Full text link
    Presentation bias is one of the key challenges when learning from implicit feedback in search engines, as it confounds the relevance signal. While it was recently shown how counterfactual learning-to-rank (LTR) approaches \cite{Joachims/etal/17a} can provably overcome presentation bias when observation propensities are known, it remains to show how to effectively estimate these propensities. In this paper, we propose the first method for producing consistent propensity estimates without manual relevance judgments, disruptive interventions, or restrictive relevance modeling assumptions. First, we show how to harvest a specific type of intervention data from historic feedback logs of multiple different ranking functions, and show that this data is sufficient for consistent propensity estimation in the position-based model. Second, we propose a new extremum estimator that makes effective use of this data. In an empirical evaluation, we find that the new estimator provides superior propensity estimates in two real-world systems -- Arxiv Full-text Search and Google Drive Search. Beyond these two points, we find that the method is robust to a wide range of settings in simulation studies

    Complementary Situational Awareness for an Intelligent Telerobotic Surgical Assistant System

    Get PDF
    Robotic surgical systems have contributed greatly to the advancement of Minimally Invasive Surgeries (MIS). More specifically, telesurgical robots have provided enhanced dexterity to surgeons performing MIS procedures. However, current robotic teleoperated systems have only limited situational awareness of the patient anatomy and surgical environment that would typically be available to a surgeon in an open surgery. Although the endoscopic view enhances the visualization of the anatomy, perceptual understanding of the environment and anatomy is still lacking due to the absence of sensory feedback. In this work, these limitations are addressed by developing a computational framework to provide Complementary Situational Awareness (CSA) in a surgical assistant. This framework aims at improving the human-robot relationship by providing elaborate guidance and sensory feedback capabilities for the surgeon in complex MIS procedures. Unlike traditional teleoperation, this framework enables the user to telemanipulate the situational model in a virtual environment and uses that information to command the slave robot with appropriate admittance gains and environmental constraints. Simultaneously, the situational model is updated based on interaction of the slave robot with the task space environment. However, developing such a system to provide real-time situational awareness requires that many technical challenges be met. To estimate intraoperative organ information continuous palpation primitives are required. Intraoperative surface information needs to be estimated in real-time while the organ is being palpated/scanned. The model of the task environment needs to be updated in near real-time using the estimated organ geometry so that the force-feedback applied on the surgeon's hand would correspond to the actual location of the model. This work presents a real-time framework that meets these requirements/challenges to provide situational awareness of the environment in the task space. Further, visual feedback is also provided for the surgeon/developer to view the near video frame rate updates of the task model. All these functions are executed in parallel and need to have a synchronized data exchange. The system is very portable and can be incorporated to any existing telerobotic platforms with minimal overhead

    Position Bias Estimation for Unbiased Learning-to-Rank in eCommerce Search

    Full text link
    The Unbiased Learning-to-Rank framework has been recently proposed as a general approach to systematically remove biases, such as position bias, from learning-to-rank models. The method takes two steps - estimating click propensities and using them to train unbiased models. Most common methods proposed in the literature for estimating propensities involve some degree of intervention in the live search engine. An alternative approach proposed recently uses an Expectation Maximization (EM) algorithm to estimate propensities by using ranking features for estimating relevances. In this work we propose a novel method to directly estimate propensities which does not use any intervention in live search or rely on modeling relevance. Rather, we take advantage of the fact that the same query-document pair may naturally change ranks over time. This typically occurs for eCommerce search because of change of popularity of items over time, existence of time dependent ranking features, or addition or removal of items to the index (an item getting sold or a new item being listed). However, our method is general and can be applied to any search engine for which the rank of the same document may naturally change over time for the same query. We derive a simple likelihood function that depends on propensities only, and by maximizing the likelihood we are able to get estimates of the propensities. We apply this method to eBay search data to estimate click propensities for web and mobile search and compare these with estimates using the EM method. We also use simulated data to show that the method gives reliable estimates of the "true" simulated propensities. Finally, we train an unbiased learning-to-rank model for eBay search using the estimated propensities and show that it outperforms both baselines - one without position bias correction and one with position bias correction using the EM method.Comment: 10 pages, 3 figure
    • …
    corecore