140 research outputs found

    Guardauto: A Decentralized Runtime Protection System for Autonomous Driving

    Full text link
    Due to the broad attack surface and the lack of runtime protection, potential safety and security threats hinder the real-life adoption of autonomous vehicles. Although efforts have been made to mitigate some specific attacks, there are few works on the protection of the self-driving system. This paper presents a decentralized self-protection framework called Guardauto to protect the self-driving system against runtime threats. First, Guardauto proposes an isolation model to decouple the self-driving system and isolate its components with a set of partitions. Second, Guardauto provides self-protection mechanisms for each target component, which combines different methods to monitor the target execution and plan adaption actions accordingly. Third, Guardauto provides cooperation among local self-protection mechanisms to identify the root-cause component in the case of cascading failures affecting multiple components. A prototype has been implemented and evaluated on the open-source autonomous driving system Autoware. Results show that Guardauto could effectively mitigate runtime failures and attacks, and protect the control system with acceptable performance overhead

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Enhancements to jml and its extended static checking technology

    Get PDF
    Formal methods are useful for developing high-quality software, but to make use of them, easy-to-use tools must be available. This thesis presents our work on the Java Modeling Language (JML) and its static verification tools. A main contribution is Offline User-Assisted Extended Static Checking (OUA-ESC), which is positioned between the traditional, fully automatic ESC and interactive Full Static Program Verification (FSPV). With OUA-ESC, automated theorem provers are used to discharge as many Verification Conditions (VCs) as possible, then users are allowed to provide Isabelle/HOL proofs for the sub-VCs that cannot be discharged automatically. Thus, users are able to take advantage of the full power of Isabelle/HOL to manually prove the system correct, if they so choose. Exploring unproven sub-VCs with Isabelle's ProofGeneral has also proven very useful for debugging code and their specifications. We also present syntax and semantics for monotonic non-null references, a common category that has not been previously identified. This monotonic non-null modifier allows some fields previously declared as nullable to be treated like local variables for nullity flow analysis. To support this work, we developed JML4, an Eclipse-based Integration Verification Environment (IVE) for the Java Modeling Language. JML4 provides integration of JML into all of the phases of the Eclipse JDT's Java compiler, makes use of external API specifications, and provides native error reporting. The verification techniques initially supported include a Non-Null Type System (NNTS), Runtime Assertion Checking (RAC), and Extended Static Checking (ESC); and verification tools to be developed by other researchers can be incorporated. JML4 was adopted by the JML4 community as the platform for their combined research efforts. ESC4, JML4's ESC component, provides other novel features not found before in ESC tools. Multiple provers are used automatically, which provides a greater coverage of language constructs that can be verified. Multi-threaded generation and distributed discharging of VCs, as well as a proof-status caching strategy, greatly speed up this CPU-intensive verification technique. VC caches are known to be fragile, and we developed a simple way to remove some of that fragility. These features combine to form the first IVE for JML, which will hopefully bring the improved quality promised by formal methods to Java developer

    Enhancing System Realisation in Formal Model Development

    Get PDF
    Software for mission-critical systems is sometimes analysed using formal specification to increase the chances of the system behaving as intended. When sufficient insights into the system have been obtained from the formal analysis, the formal specification is realised in the form of a software implementation. One way to realise the system's software is by automatically generating it from the formal specification -- a technique referred to as code generation. However, in general it is difficult to make guarantees about the correctness of the generated code -- especially while requiring automation of the steps involved in realising the formal specification. This PhD dissertation investigates ways to improve the automation of the steps involved in realising and validating a system based on a formal specification. The approach aims to develop properly designed software tools which support the integration of formal methods tools into the software development life cycle, and which leverage the formal specification in the subsequent validation of the system. The tools developed use a new code generation infrastructure that has been built as part of this PhD project and implemented in the Overture tool -- a formal methods tool that supports the Vienna Development Method. The development of the code generation infrastructure has involved the re-design of the software architecture of Overture. The new architecture brings forth the reuse and extensibility features of Overture to take into account the needs and requirements of software extensions targeting Overture. The tools developed in this PhD project have successfully supported three case studies from externally funded projects. The feedback received from the case study work has further helped improve the code generation infrastructure and the tools built using it

    Advanced Security Analysis for Emergent Software Platforms

    Get PDF
    Emergent software ecosystems, boomed by the advent of smartphones and the Internet of Things (IoT) platforms, are perpetually sophisticated, deployed into highly dynamic environments, and facilitating interactions across heterogeneous domains. Accordingly, assessing the security thereof is a pressing need, yet requires high levels of scalability and reliability to handle the dynamism involved in such volatile ecosystems. This dissertation seeks to enhance conventional security detection methods to cope with the emergent features of contemporary software ecosystems. In particular, it analyzes the security of Android and IoT ecosystems by developing rigorous vulnerability detection methods. A critical aspect of this work is the focus on detecting vulnerable and unsafe interactions between applications that share common components and devices. Contributions of this work include novel insights and methods for: (1) detecting vulnerable interactions between Android applications that leverage dynamic loading features for concealing the interactions; (2) identifying unsafe interactions between smart home applications by considering physical and cyber channels; (3) detecting malicious IoT applications that are developed to target numerous IoT devices; (4) detecting insecure patterns of emergent security APIs that are reused from open-source software. In all of the four research thrusts, we present thorough security analysis and extensive evaluations based on real-world applications. Our results demonstrate that the proposed detection mechanisms can efficiently and effectively detect vulnerabilities in contemporary software platforms. Advisers: Hamid Bagheri and Qiben Ya

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore