240 research outputs found

    Robust Physics-based Deep MRI Reconstruction Via Diffusion Purification

    Full text link
    Deep learning (DL) techniques have been extensively employed in magnetic resonance imaging (MRI) reconstruction, delivering notable performance enhancements over traditional non-DL methods. Nonetheless, recent studies have identified vulnerabilities in these models during testing, namely, their susceptibility to (\textit{i}) worst-case measurement perturbations and to (\textit{ii}) variations in training/testing settings like acceleration factors and k-space sampling locations. This paper addresses the robustness challenges by leveraging diffusion models. In particular, we present a robustification strategy that improves the resilience of DL-based MRI reconstruction methods by utilizing pretrained diffusion models as noise purifiers. In contrast to conventional robustification methods for DL-based MRI reconstruction, such as adversarial training (AT), our proposed approach eliminates the need to tackle a minimax optimization problem. It only necessitates fine-tuning on purified examples. Our experimental results highlight the efficacy of our approach in mitigating the aforementioned instabilities when compared to leading robustification approaches for deep MRI reconstruction, including AT and randomized smoothing

    Stochastic Optimization of 3D Non-Cartesian Sampling Trajectory (SNOPY)

    Full text link
    Optimizing 3D k-space sampling trajectories for efficient MRI is important yet challenging. This work proposes a generalized framework for optimizing 3D non-Cartesian sampling patterns via data-driven optimization. We built a differentiable MRI system model to enable gradient-based methods for sampling trajectory optimization. By combining training losses, the algorithm can simultaneously optimize multiple properties of sampling patterns, including image quality, hardware constraints (maximum slew rate and gradient strength), reduced peripheral nerve stimulation (PNS), and parameter-weighted contrast. The proposed method can either optimize the gradient waveform (spline-based freeform optimization) or optimize properties of given sampling trajectories (such as the rotation angle of radial trajectories). Notably, the method optimizes sampling trajectories synergistically with either model-based or learning-based reconstruction methods. We proposed several strategies to alleviate the severe non-convexity and huge computation demand posed by the high-dimensional optimization. The corresponding code is organized as an open-source, easy-to-use toolbox. We applied the optimized trajectory to multiple applications including structural and functional imaging. In the simulation studies, the reconstruction PSNR of a 3D kooshball trajectory was increased by 4 dB with SNOPY optimization. In the prospective studies, by optimizing the rotation angles of a stack-of-stars (SOS) trajectory, SNOPY improved the PSNR by 1.4dB compared to the best empirical method. Optimizing the gradient waveform of a rotational EPI trajectory improved subjects' rating of the PNS effect from 'strong' to 'mild.' In short, SNOPY provides an efficient data-driven and optimization-based method to tailor non-Cartesian sampling trajectories.Comment: 13 pages, 8 figure
    • …
    corecore