6,005 research outputs found

    Offline Handwritten Signature Verification - Literature Review

    Full text link
    The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced by an impostor). This has demonstrated to be a challenging task, in particular in the offline (static) scenario, that uses images of scanned signatures, where the dynamic information about the signing process is not available. Many advancements have been proposed in the literature in the last 5-10 years, most notably the application of Deep Learning methods to learn feature representations from signature images. In this paper, we present how the problem has been handled in the past few decades, analyze the recent advancements in the field, and the potential directions for future research.Comment: Accepted to the International Conference on Image Processing Theory, Tools and Applications (IPTA 2017

    Feature Representation for Online Signature Verification

    Full text link
    Biometrics systems have been used in a wide range of applications and have improved people authentication. Signature verification is one of the most common biometric methods with techniques that employ various specifications of a signature. Recently, deep learning has achieved great success in many fields, such as image, sounds and text processing. In this paper, deep learning method has been used for feature extraction and feature selection.Comment: 10 pages, 10 figures, Submitted to IEEE Transactions on Information Forensics and Securit

    Off-line Signature Verification Based on Fusion of Grid and Global Features Using Neural Networks

    Get PDF
    Signature is widely used and developed area of research for personal verification and authentication. In this paper Off-line Signature Verification Based on Fusion of Grid and Global Features Using Neural Networks (SVFGNN) is presented. The global and grid features are fused to generate set of features for the verification of signature. The test signature is compared with data base signatures based on the set of features and match/non match of signatures is decided with the help of Neural Network. The performance analysis is conducted on random, unskilled and skilled signature forgeries along with genuine signatures. It is observed that FAR and FRR results are improved in the proposed method compared to the existing algorithm

    Offline signature verification using classifier combination of HOG and LBP features

    Get PDF
    We present an offline signature verification system based on a signature’s local histogram features. The signature is divided into zones using both the Cartesian and polar coordinate systems and two different histogram features are calculated for each zone: histogram of oriented gradients (HOG) and histogram of local binary patterns (LBP). The classification is performed using Support Vector Machines (SVMs), where two different approaches for training are investigated, namely global and user-dependent SVMs. User-dependent SVMs, trained separately for each user, learn to differentiate a user’s signature from others, whereas a single global SVM trained with difference vectors of query and reference signatures’ features of all users, learns how to weight dissimilarities. The global SVM classifier is trained using genuine and forgery signatures of subjects that are excluded from the test set, while userdependent SVMs are separately trained for each subject using genuine and random forgeries. The fusion of all classifiers (global and user-dependent classifiers trained with each feature type), achieves a 15.41% equal error rate in skilled forgery test, in the GPDS-160 signature database without using any skilled forgeries in training

    Offline Signature Verification using CNN

    Get PDF
    This paper presents the convolutional neural network for feature extraction and Support vector machine for theverification of offline signatures. The cropped signatures are used to train CNN forr extracting features. The Extracted features are classified into two classes genuine or forgery using SVM. The the new signature is tested on GPDS signature data base using the trained SVM. The dabase contains signatures of 960 users and for each user there are 24 genuine signatures and 30 forgeries. The CNN network is trained with 300 users and signatures of 400 users are used for feature learning. These 400x20x25 signatures are used 90%to train and 10% to test SVM classifier
    corecore