504 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ļ¬fth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ļ¬elds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiļ¬ed Proportional Conļ¬‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiļ¬ers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiļ¬cation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiļ¬cation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiļ¬cation, and hybrid techniques mixing deep learning with belief functions as well

    Examining the Relationships Between Distance Education Studentsā€™ Self-Efficacy and Their Achievement

    Get PDF
    This study aimed to examine the relationships between studentsā€™ self-efficacy (SSE) and studentsā€™ achievement (SA) in distance education. The instruments were administered to 100 undergraduate students in a distance university who work as migrant workers in Taiwan to gather data, while their SA scores were obtained from the university. The semi-structured interviews for 8 participants consisted of questions that showed the specific conditions of SSE and SA. The findings of this study were reported as follows: There was a significantly positive correlation between targeted SSE (overall scales and general self-efficacy) and SA. Targeted students' self-efficacy effectively predicted their achievement; besides, general self- efficacy had the most significant influence. In the qualitative findings, four themes were extracted for those students with lower self-efficacy but higher achievementā€”physical and emotional condition, teaching and learning strategy, positive social interaction, and intrinsic motivation. Moreover, three themes were extracted for those students with moderate or higher self-efficacy but lower achievementā€”more time for leisure (not hard-working), less social interaction, and external excuses. Providing effective learning environments, social interactions, and teaching and learning strategies are suggested in distance education

    Demand Response in Smart Grids

    Get PDF
    The Special Issue ā€œDemand Response in Smart Gridsā€ includes 11 papers on a variety of topics. The success of this Special Issue demonstrates the relevance of demand response programs and events in the operation of power and energy systems at both the distribution level and at the wide power system level. This reprint addresses the design, implementation, and operation of demand response programs, with focus on methods and techniques to achieve an optimized operation as well as on the electricity consumer

    Advanced Characterization and On-Line Process Monitoring of Additively Manufactured Materials and Components

    Get PDF
    This reprint is concerned with the microstructural characterization and the defect analysis of metallic additively manufactured (AM) materials and parts. Special attention is paid to the determination of residual stress in such parts and to online monitoring techniques devised to predict the appearance of defects. Finally, several non-destructive testing techniques are employed to assess the quality of AM materials and parts

    Face Image and Video Analysis in Biometrics and Health Applications

    Get PDF
    Computer Vision (CV) enables computers and systems to derive meaningful information from acquired visual inputs, such as images and videos, and make decisions based on the extracted information. Its goal is to acquire, process, analyze, and understand the information by developing a theoretical and algorithmic model. Biometrics are distinctive and measurable human characteristics used to label or describe individuals by combining computer vision with knowledge of human physiology (e.g., face, iris, fingerprint) and behavior (e.g., gait, gaze, voice). Face is one of the most informative biometric traits. Many studies have investigated the human face from the perspectives of various different disciplines, ranging from computer vision, deep learning, to neuroscience and biometrics. In this work, we analyze the face characteristics from digital images and videos in the areas of morphing attack and defense, and autism diagnosis. For face morphing attacks generation, we proposed a transformer based generative adversarial network to generate more visually realistic morphing attacks by combining different losses, such as face matching distance, facial landmark based loss, perceptual loss and pixel-wise mean square error. In face morphing attack detection study, we designed a fusion-based few-shot learning (FSL) method to learn discriminative features from face images for few-shot morphing attack detection (FS-MAD), and extend the current binary detection into multiclass classification, namely, few-shot morphing attack fingerprinting (FS-MAF). In the autism diagnosis study, we developed a discriminative few shot learning method to analyze hour-long video data and explored the fusion of facial dynamics for facial trait classification of autism spectrum disorder (ASD) in three severity levels. The results show outstanding performance of the proposed fusion-based few-shot framework on the dataset. Besides, we further explored the possibility of performing face micro- expression spotting and feature analysis on autism video data to classify ASD and control groups. The results indicate the effectiveness of subtle facial expression changes on autism diagnosis

    Novel methods for multi-view learning with applications in cyber security

    Get PDF
    Modern data is complex. It exists in many different forms, shapes and kinds. Vectors, graphs, histograms, sets, intervals, etc.: they each have distinct and varied structural properties. Tailoring models to the characteristics of various feature representations has been the subject of considerable research. In this thesis, we address the challenge of learning from data that is described by multiple heterogeneous feature representations. This situation arises often in cyber security contexts. Data from a computer network can be represented by a graph of user authentications, a time series of network traffic, a tree of process events, etc. Each representation provides a complementary view of the holistic state of the network, and so data of this type is referred to as multi-view data. Our motivating problem in cyber security is anomaly detection: identifying unusual observations in a joint feature space, which may not appear anomalous marginally. Our contributions include the development of novel supervised and unsupervised methods, which are applicable not only to cyber security but to multi-view data in general. We extend the generalised linear model to operate in a vector-valued reproducing kernel Hilbert space implied by an operator-valued kernel function, which can be tailored to the structural characteristics of multiple views of data. This is a highly flexible algorithm, able to predict a wide variety of response types. A distinguishing feature is the ability to simultaneously identify outlier observations with respect to the fitted model. Our proposed unsupervised learning model extends multidimensional scaling to directly map multi-view data into a shared latent space. This vector embedding captures both commonalities and disparities that exist between multiple views of the data. Throughout the thesis, we demonstrate our models using real-world cyber security datasets.Open Acces

    Getting the gist of it: An investigation of gist processing and the learning of novel gist categories

    Get PDF
    Gist extraction rapidly processes global structural regularities to provide access to the general meaning and global categorizations of our visual environment ā€“ the gist. Medical experts can also extract gist information from mammograms to categorize them as normal or abnormal. However, the visual properties influencing the gist of medical abnormality are largely unknown. It is also not known how medical experts, or any observer for that matter, learned to recognise the gist of new categories. This thesis investigated the processing and acquisition of the gist of abnormality. Chapter 2 observed no significant differences in performance between 500 ms and unlimited viewing time, suggesting that the gist of abnormality is fully accessible after 500 ms and remains available during further visual processing. Next, chapter 3 demonstrated that certain high-pass filters enhanced gist signals in mammograms at risk of future cancer, without affecting overall performance. These filters could be used to enhance mammograms for gist risk-factor scoring. Chapter 4ā€™s multi-session training showed that perceptual exposure with global feedback is sufficient to induce learning of a new gist categorisation. However, learning was affected by individual differences and was not significantly retained after 7-10 days, suggesting that prolonged perceptual exposure might be needed for consolidation. Chapter 5 observed evidence for the neural signature of gist extraction in medical experts across a network of regions, where neural activity patterns showed clear individual differences. Overall, the findings of this thesis confirm the gist extraction of medical abnormality as a rapid, global process that is sensitive to spatial structural regularities. Additionally, it was shown that a gist category can be learned via global feedback, but this learning is hard to retain and is affected by individual differences. Similarly, individual differences were observed in the neural signature of gist extraction by medical experts
    • ā€¦
    corecore