88 research outputs found

    Body-centric Wireless Hospital Patient Monitoring Networks using Body-contoured Flexible Antennas

    Get PDF
    This paper presents empirical results from a measurement campaign to investigate futuristic body-centric medical mesh networks for a hospitalized patient using flexible body-contouring antennas. It studies path loss in a medical environment (in a hospital bed in an open hospital ward) for UWB and four narrowband schemes concurrently. It firstly investigates the antenna contouring effects due to mounting the flexible antennas on various body surfaces, then uses statistical analysis to explore optimal body locations for a master node to inform allocation of processing power (assuming point-to-point link from other nodes). Results indicated how the most suitable body location varies depending on the posture and frequency scheme used. Also investigated are best route selections for multi-hop mesh network topologies for opportunistic networking for each of the presented postures and frequencies; this reveals how less hops were required to navigate around the narrowband network compared to UWB which effectively reduces required processing power and data traffic. Understanding how disparate body-centric medical devices communicate with one another in a body-mesh network is instrumental to the strategic and informed development of next generation healthcare patient monitoring solutions

    Antenna and radio channel characterisation for low‐power personal and body area networks

    Get PDF
    PhDThe continuous miniaturisation of sensors, as well as the progression in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to new usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body. Body-centric wireless communications (BCWCs) is a central point in the development of fourth generation mobile communications. Body-centric wireless networks take their place within the personal area networks, body area networks and sensor networks which are all emerging technologies that have a wide range of applications (such as, healthcare, entertainment, surveillance, emergency, sports and military). The major difference between BCWC and conventional wireless systems is the radio channels over which the communication takes place. The human body is a hostile environment from a radio propagation perspective and it is therefore important to understand and characterise the effects of the human body on the antenna elements, the radio channel parameters and, hence, system performance. This thesis focuses on the study of body-worn antennas and on-body radio propagation channels. The performance parameters of five different narrowband (2.45 GHz) and four UWB (3.1- 10.6 GHz) body-worn antennas in the presence of human body are investigated and compared. This was performed through a combination of numerical simulations and measurement campaigns. Parametric studies and statistical analysis, addressing the human body effects on the performance parameters of different types of narrowband and UWB antennas have been presented. The aim of this study is to understand the human body effects on the antenna parameters and specify the suitable antenna in BCWCs at both 2.45 GHz and UWB frequencies. Extensive experimental investigations are carried out to study the effects of various antenna types on the on-body radio propagation channels as well. Results and analysis emphasize the best body-worn antenna for reliable and power-efficient on-body communications. Based on the results and analysis, a novel dual-band and dual-mode antenna is proposed for power-efficient and reliable on-body and off-body communications. The on-body performance of the DBDM antenna at 2.45 GHz is compared with other five narrowband antennas. Based on the results and analysis of six narrowband and four UWB antennas, antenna specifications and design guidelines are provided that will help in selecting the best body-worn antenna for both narrowband and UWB systems to be applied in body-centric wireless networks (BCWNs). A comparison between IV the narrowband and UWB antenna parameters are also provided. At the end of the thesis, the subject-specificity of the on-body radio propagation channel at 2.45 GHz and 3-10 GHz was experimentally investigated by considering eight real human test subjects of different shapes, heights and sizes. The subject-specificity of the on-body radio propagation channels was compared between the narrowband and UWB systems as well

    Detecting Vital Signs with Wearable Wireless Sensors

    Get PDF
    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented

    ECG Motion Artefact Reduction Improvements of a Chest-based Wireless Patient Monitoring System

    Get PDF
    Abstract An evaluation of motion artefact for a newly CE approved wireless bodyworn monitoring device is presented. This evaluation has shown that the system under test has greatly reduced motion artefact with comparison to an FDA-approved leaded system. Analysis of physiological data, such as quality of ECG signal, accuracy of recording of heart rate, temperature and ECG R-R interval has shown the system to offer high fidelity recordings and a robust service during a range of basic movements. Presented results have shown that the average difference in heart rate between the prototype and the reference device was 3.8bpm with standard deviation of 12.4bpm. Temperature analysis indicated the average difference between the prototype and the reference device was 5.66 o C, with standard deviation of 0.44 o C. R-R interval analysis highlighted mean interval difference as 78.96ms with standard deviation of 123.1ms. In general, the user activity of bending had highest errors due to the considerable torso movement

    Measurement and Modeling of Wireless Off-Body Propagation Characteristics under Hospital Environment at 6-8.5 GHz

    Full text link
    © 2013 IEEE. A measurement-based novel statistical path-loss model with a height-dependent factor and a body obstruction (BO) attenuation factor for off-body channel under a hospital environment at 6-8.5 GHz is proposed. The height-dependent factor is introduced to emulate different access point (AP) arrangement scenarios, and the BO factor is employed to describe the effect caused by different body-worn positions. The height-dependent path-loss exponent is validated to fluctuate from 2 to 4 with AP height increasing by employing both computer simulation and classical two-ray model theory. As further validated, the proposed model can provide more flexibility and higher accuracy compared with its existing counterparts. The presented channel model is expected to provide wireless link budget estimation and to further develop the physical layer algorithms for body-centric communication systems under hospital environments

    Modelling and characterisation of antennas and propagation for body-centric wireless communication

    Get PDF
    PhDBody-Centric Wireless Communication (BCWC) is a central point in the development of fourth generation mobile communications. The continuous miniaturisation of sensors, in addition to the advancement in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to a new concept of usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body or even implanted. Body-centric wireless networks take their place within the personal area networks, body area networks and body sensor networks which are all emerging technologies that have a broad range of applications such as healthcare and personal entertainment. The major difference between BCWC and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile environment from radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio channel parameters and hence the system performance. This is presented and highlighted in the thesis through a combination of experimental and electromagnetic numerical investigations, with a particular emphasis to the numerical analysis based on the finite-difference time-domain technique. The presented research work encapsulates the characteristics of the narrowband (2.4 GHz) and ultra wide-band (3-10 GHz) on-body radio channels with respect to different digital phantoms, body postures, and antenna types hence highlighting the effect of subject-specific modelling, static and dynamic environments and antenna performance on the overall body-centric network. The investigations covered extend further to include in-body communications where the radio channel for telemetry with medical implants is also analysed by considering the effect of different digital phantoms on the radio channel characteristics. The study supports the significance of developing powerful and reliable numerical modelling to be used in conjunction with measurement campaigns for a comprehensive understanding of the radio channel in body-centric wireless communication. It also emphasises the importance of considering subject-specific electromagnetic modelling to provide a reliable prediction of the network performance

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore