3,651 research outputs found

    Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments

    Full text link
    In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In this work, we present eight solutions that used deep reinforcement learning approaches, based on algorithms such as Deep Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region Policy Optimization. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each of the eight teams implemented different modifications of the known algorithms.Comment: 27 pages, 17 figure

    CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

    Get PDF
    In open-ended environments, autonomous learning agents must set their own goals and build their own curriculum through an intrinsically motivated exploration. They may consider a large diversity of goals, aiming to discover what is controllable in their environments, and what is not. Because some goals might prove easy and some impossible, agents must actively select which goal to practice at any moment, to maximize their overall mastery on the set of learnable goals. This paper proposes CURIOUS, an algorithm that leverages 1) a modular Universal Value Function Approximator with hindsight learning to achieve a diversity of goals of different kinds within a unique policy and 2) an automated curriculum learning mechanism that biases the attention of the agent towards goals maximizing the absolute learning progress. Agents focus sequentially on goals of increasing complexity, and focus back on goals that are being forgotten. Experiments conducted in a new modular-goal robotic environment show the resulting developmental self-organization of a learning curriculum, and demonstrate properties of robustness to distracting goals, forgetting and changes in body properties.Comment: Accepted at ICML 201

    Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics

    Full text link
    Value-based reinforcement-learning algorithms provide state-of-the-art results in model-free discrete-action settings, and tend to outperform actor-critic algorithms. We argue that actor-critic algorithms are limited by their need for an on-policy critic. We propose Bootstrapped Dual Policy Iteration (BDPI), a novel model-free reinforcement-learning algorithm for continuous states and discrete actions, with an actor and several off-policy critics. Off-policy critics are compatible with experience replay, ensuring high sample-efficiency, without the need for off-policy corrections. The actor, by slowly imitating the average greedy policy of the critics, leads to high-quality and state-specific exploration, which we compare to Thompson sampling. Because the actor and critics are fully decoupled, BDPI is remarkably stable, and unusually robust to its hyper-parameters. BDPI is significantly more sample-efficient than Bootstrapped DQN, PPO, and ACKTR, on discrete, continuous and pixel-based tasks. Source code: https://github.com/vub-ai-lab/bdpi.Comment: Accepted at the European Conference on Machine Learning 2019 (ECML
    corecore